Чем измеряют сопротивление изоляции
Измерение сопротивления изоляции: полное руководство
Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.
Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.
Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.
Проверка: испытание или измерение?
На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.
Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.
При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).
Типовые причины неисправности изоляция
Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.
Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.
1. Электрические нагрузки
В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.
2. Механические нагрузки
Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.
3. Химические воздействия
Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.
4. Напряжения, связанные с колебаниями температуры:
В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.
5. Загрязнение окружающей среды
Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.
В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.
Внешние загрязнения:
В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.
Принцип измерения сопротивления изоляции и влияющие на него факторы
Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.
На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.
Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:
- Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
- Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
- Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.
На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.
Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.
Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.
Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.
Влияние температуры
Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.
Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.
Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)
Методы тестирования и интерпретация результатов
Кратковременное или точечное измерение
Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.
Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.
На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.
В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.
Резкое падение в точке B указывает на повреждение изоляции.
В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.
Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)
Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.
Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.
Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.
Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.
Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.
Показатель поляризации (PI)
При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.
Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.
Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.
PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)
Результаты интерпретируются следующим образом:
Значение PI (нормы) |
Состояние изоляции |
<2 |
Проблемное |
От 2 до 4 |
Хорошее |
> 4 |
Отличное |
Коэффициент диэлектрической абсорбции (DAR)
Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:
DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)
Результаты интерпретируются следующим образом:
Значение DAR (нормы) |
Состояние изоляции |
<1,25 |
Неудовлетворительное |
<1,6 |
Нормальное |
>1,6 |
Отличное |
Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)
Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.
Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.
Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.
Метод испытания рассеиванием в диэлектрике (DD)
Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.
Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.
Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:
DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)
Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.
DD (нормы) |
Состояние |
> 7 |
Очень плохое |
От 4 до 7 |
Плохое |
От 2 до 4 |
Сомнительное |
<2 |
Нормальное |
Внимание: Данный метод измерения зависим от температуры, поэтому каждая попытка тестирования должна выполняться при стандартной температуре или, по крайней мере, температура должна фиксироваться вместе с результатом теста.
Тестирование изоляции с высоким сопротивлением: использование гнезда G на мегомметре
При измерении значений сопротивления изоляции (выше 1 ГОм) на точность измерений могут повлиять токи утечки, протекающие по поверхности изоляционного материала через имеющиеся на ней влагу и загрязнения. Значение сопротивления больше не является высоким, и поэтому пренебрежимо малым по сравнению с сопротивлением оцениваемой изоляции. Для устранения снижающей точность измерения изоляции поверхностной утечки тока на некоторых мегомметрах имеется третье гнездо с обозначением G (Guard). Это гнездо шунтирует измерительную цепь и повторно вводит поверхностный ток в одну из точек тестирования, минуя цепь измерения (смотрите рисунок ниже).
При выборе первой схемы, без использования гнезда G, одновременно измеряется ток утечки i и нежелательный поверхностный ток I1, поэтому сопротивление изоляции измеряется неверно.
Однако при выборе второй схемы измеряется только ток утечки i. Подключение к гнезду G позволяет отвести поверхностный ток I1, поэтому измерение сопротивления изоляции проводится правильно.
Гнездо G необходимо соединить с поверхностью, по которой протекают поверхностные токи, и которая не относится к таким изоляторам, как изоляционные материалы кабелей или трансформаторов. Знание возможных путей протекания испытательных токов через тестируемый элемент имеет решающее значение для выбора места соединения с гнездом G.
Нормы испытательного напряжения для кабелей/оборудования
Рабочее напряжение кабеля/оборудования |
Нормы испытательного напряжения постоянного тока |
От 24 до 50 В |
От 50 до 100 В постоянного тока |
От 50 до 100 В |
От 100 до 250 В постоянного тока |
От 100 до 240 В |
От 250 до 500 В постоянного тока |
От 440 до 550 В |
От 500 до 1000 В постоянного тока |
2400 В |
От 1000 до 2500 В постоянного тока |
4100 В |
От 1000 до 5000 В постоянного тока |
От 5000 до 12 000 В |
От 2500 до 5000 В постоянного тока |
> 12 000 В |
От 5000 до 10 000 В постоянного тока |
В приведенной выше таблице показаны рекомендованные нормы испытательного напряжения в соответствии с рабочими напряжениями установок и оборудования (значения взяты из руководства IEEE 43-2000).
Кроме того, эти значения задаются для электрических приборов в самых разнообразных местных и международных стандартах (IEC 60204, IEC 60439, IEC 60598 и т.д.).
Во Франции, например, стандарт NFC15-100 предусматривает значения испытательного напряжения и минимального сопротивления изоляции для электроустановок (500 В постоянного тока и 0,5 МОм при номинальном напряжении от 50 до 500 В).
Однако вам настоятельно рекомендуется обратиться к изготовителю кабеля/оборудования, чтобы узнать их собственные рекомендации по требуемому испытательному напряжению.
Безопасность при тестировании изоляции
Перед тестированием
A. Чтобы испытательное напряжение не было приложено к другому оборудованию, имеющему электрическое соединение с тестируемой цепью, испытание должно проводиться на отключенной, не проводящей электрический ток установке.
B. Убедитесь, что цепь разряжена. Ее можно разрядить, замкнув накоротко выводы оборудования и/или замкнув их на землю на определенное время (смотрите время разряда).
C. Если тестируемое оборудование находится в огнеопасной или взрывоопасной среде, необходима специальная защита, поскольку, если изоляция повреждена, при разряде изоляции (до и после испытания), а также во время тестирования могут возникать искры.
D. Из-за наличия напряжения постоянного тока, величина которого может быть достаточно высокой, рекомендуется ограничить доступ другого персонала и надевать средства индивидуальной защиты (например, защитные перчатки), предназначенные для работы на электрооборудовании.
E. Используйте только те соединительные кабели, которые подходят для проводимого испытания; убедитесь, что кабели находятся в хорошем состоянии. В лучшем случае неподходящие кабели приведут к ошибкам измерения, но гораздо важнее, что они могут быть опасными.
После тестирования
К концу испытания изоляция накапливает значительную энергию, которую необходимо сбросить до выполнения любых других операций. Простое правило безопасности заключается в том, чтобы предоставить оборудованию возможность разряжаться в течение времени, в пять раз превышающего время зарядки (время последнего теста). Для разрядки оборудования можно накоротко замкнуть его выводы и/или соединить их с землей. Все изготовленные компанией Chauvin Arnoux мегомметры оборудованы встроенными цепями разрядки, которые автоматически обеспечивают требуемую безопасность.
Часто задаваемые вопросы
Результат моих измерений – x МОм. Это нормально?
Какое должно быть сопротивление изоляции - на этот вопрос нет единого ответа. Точный ответ на него могут дать производитель оборудования или соответствующие стандарты. Для низковольтных установок минимальным значением можно считать значение 1 МОм. Для установок или оборудования с более высоким рабочим напряжением можно использовать правило, определяющее минимальное значение 1 МОм на кВ, в то время как рекомендации IEEE, касающиеся вращающихся машин, определяют минимальное сопротивление изоляции (n + 1) МОм, где n – рабочее напряжение в кВ.
Какие измерительные провода следует использовать для подключения мегомметра к тестируемой установке?
Используемые на мегомметрах провода должны иметь спецификации, подходящие для выполняемых измерений с точки зрения используемых напряжений или качества изоляционных материалов. Использование несоответствующих измерительных проводов может привести к ошибкам измерения или даже оказаться опасным.
Какие меры предосторожности следует принимать при измерении высокого сопротивления изоляции?
При измерении высоких значений сопротивления изоляции в дополнение к указанным выше правилам безопасности необходимо соблюдать следующие меры предосторожности.
- Используйте специальное гнездо G (Guard) (описывается в специальном разделе выше).
- Используйте чистые, сухие провода.
- Прокладывайте провода на расстоянии друг от друга и без контакта с любыми объектами или с полом. Это позволит ограничить возможность возникновения токов утечки в самой измерительной линии.
- Не касайтесь проводов и не перемещайте их во время измерения, чтобы избежать возникновения вызывающих помехи емкостных эффектов.
- Для стабилизации измерения выждите необходимое время.
Почему два последовательных измерения не всегда дают одинаковый результат?
Применение высокого напряжения создает электрическое поле, которое поляризует изоляционные материалы. Важно понимать, что для возвращения изоляционных материалов после завершения тестирования в состояние, в котором они находились до испытания, потребуется значительное время. В некоторых случаях на это может потребоваться больше времени, чем указанное выше время разрядки.
Как протестировать изоляцию, если я не могу отключить установку?
Если невозможно отключить питание тестируемой установки или оборудования, мегомметр использовать нельзя. В некоторых случаях можно провести тестирование без снятия напряжения, используя для измерения тока утечки специальные клещи, но этот метод гораздо менее точен.
Как выбрать измеритель сопротивления изоляции (мегомметр)?
При выборе измерителя сопротивления изоляции необходимо задать следующие ключевые вопросы:
- Какое максимальное испытательное напряжение необходимо?
- Какие методы измерения будут использоваться (точечные измерения, PI, DAR, DD, ступенчатое изменение напряжения)?
- Какое максимальное значение сопротивления изоляции будет измеряться?
- Как будет подаваться питание на мегомметр?
- Каковы возможности хранения результатов измерений?
Примеры измерений сопротивления изоляции
Измерение изоляции на электрической установке, электрооборудовании
Измерение изоляции на вращающейся машине (электродвигатель)
Измерение изоляции на электроинструменте
Измерение изоляции на трансформаторе
Измерение сопротивления изоляции трансформатора производят следующим образом:
a. Между высоковольтной обмоткой и низковольтной обмоткой и землей
b. Между низковольтной обмоткой и высоковольтной обмоткой и землей
c. Между высоковольтной обмоткой и низковольтной обмоткой
d. Между высоковольтной обмоткой и землей
e. Между низковольтной обмоткой и землей
Выбираем приборы
Посмотреть приборы для проверки изоляции высоковольтных кабелей.
методика измерения, используемые приборы, как провести, пошаговая инструкция
Сопротивление изоляции — важный параметр, без нормального показателя которого невозможна безопасная работа электроприборов. Что такое замер сопротивления, как проводить эту процедуру, как проверить электропроводку на этот показатель в электролаборатории и многое другое далее.
Что это такое
Сопротивление изоляции — показатель, который влияет на безопасность работы электрических установок. Также это главный параметр во всех кабелях и проводах, поскольку при эксплуатации они всегда подвергаются разным физическим и другим воздействиям. Согласно понятию из учебника физики это соотношение напряжения, которое приложено к диэлектрическому элементу к току, протекающему через этот элемент.

Несмотря на то, что кабели сделаны из качественного и долговечного материала, он может выйти из строя вследствие:
- высокого напряжения и солнечного света;
- механического повреждения и постановки неправильного температурного режима;
- неблагоприятной среды эксплуатации.
Чтобы точно выяснить причины повреждений в цепи кабеля или проверить возможность в дальнейшем эксплуатировать изоляцию, необходимо сделать замер сопротивления изоляции.
Обратите внимание! В случае визуального обнаружения изоляции, выполнение измерений уже не требуется. Осуществляя проведение замеров сопротивления изоляции мегаомметром, можно убрать неисправность, предотвратить пожар и аварийную ситуацию, убрать чрезмерно изношенное устройство, устранить короткие замыкания с возможными ударами тока людей.

Как обследовать электропроводку
Сделать обследование электрической проводки можно только после осмотра ее целостности. Так, на проводных изгибах не должно быть поломанных, потресканных и раскрошенных частей. Если после визуального просмотра, не были выявлены предпосылки того, чтобы заменить кабель, необходимо сделать измерение сопротивления изоляции. Для этого нужно воспользоваться мегаомметром.

Согласно правилам устройства электрических установок, в сети не должно быть сопротивление меньше 0,5 МОм, чтобы можно было правильно провести испытание с напряжением в тысячу вольт.
Кроме того, исследуется электропроводка в качестве профилактики. К примеру, изоляционное сопротивление нужно проверять каждые три года по правилам технической эксплуатации электрических установок. Где есть особо опасные объекты и наружные установки, проверку делают раз в год.
Обратите внимание! При начале работы необходимо сделать подсчет общей мощности потенциальных установленных электрических приборов. Исходя из данной информации, необходимо вычисление сечения кабели по показателям мощности. Далее необходимо сравнить получившуюся цифру с той, что равна сечению кабеля. Если она меньше, значит нужно в срочном порядке менять всю электрическую проводку.
Потом нужно проверить всю скрытую проводку. На части изоляции не должно быть никаких повреждений. Провода должны иметь специальные клеммы.
Обязательно необходимо осуществить проверку распределительного щита. Он должен быть правильным образом собран. В противном случае, когда будут подключены все электроприборы к щитку, автомат будет выбивать из-за предельной нагрузки.

Шкала допустимого сопротивления
Как правило, каждая шкала на предприятии своя, в зависимости от оборудования. Далее даны примеры допустимого изоляционного сопротивления электрических установок, аппаратов, цепей и проводок:
- Электроустановка 12 ватт = менее 0,5 МОм;
- Аппарат напряжения от 42 до 380 ватт = менее 0,5 МОм;
- Электрический инструмент ручного типа в виде трансформатора, переносного светильника = менее 0,5МОм, а в напряжении 2 МОм;
- Бытовая стационарная электроплита = 1МОм;
- Кран и люфт = 0,5МОм;
- Силовая и осветительная электропроводка, распределительная установка, щиток и токопровод = 0,5 МОм;
- Вторичная управленческая цепь защиты измерения или сигнализации = 1 МОм и выше;
- Цепь управления, цепь питания и цепи напряжения — 1 МОм и выше.
Замер сопротивления изоляции кабеля
Замер сопротивления изоляции электропроводки происходит около двух точек электрической установки, характеризующей утечку при подаче напряжения в сети. Результат — показатель, выражаемый в мегаомах. Измерение осуществляется при помощи мегаомметра, который исследует утечку тока, возникающую при действии регулярно поступающего напряжения к электрической установке.
Современными мегаомметрами выдаются разные уровни напряжения, чтобы испытать различное оборудование. В итоге, обязательная часть проверки цепи — изучение изоляционного сопротивления.

Приборы для измерений
Сегодня измерением сопротивления изоляции в кабелях занимаются мегаомметры, лучшие из которых М — 4100, ЭСО 202 / 2Г, MIC — 30, MIC — 1000 и MIC-2500. Поскольку электротехника, как и мир, не стоит на месте, появляются новые устройства и обновления старых.

Мегаомметр
Мегаомметр является специальным прибором, используемым профессиональными электриками, чтобы измерять электросети и приборы. Отличается от омметра тем, что может измерять на более высоком напряжении. Чтобы проверять сопротивление, прибором напряжение генерируется самостоятельно благодаря встроенному механическому генератору или батареи.
Обратите внимание! Конструкция его проста: источник питания, к примеру, генератор переменного тока, имеющий выпрямительный мост, и измерительный механизм.
Применение его широкое. Его используют, чтобы выявить повреждения в электросетях перед тем, как начать эксплуатировать ее, а также обнаружить места, где уже создалась аварийная ситуация. Чтобы проверить изоляцию кабеля в трансформаторной, электродвигательной части и любых устройствах, обладающих электрической обмоткой и изоляцией. Главное предназначение в измерении изоляционного сопротивления кабелей.
Благодаря испытаниям, можно понять, где находятся слабые места в электрических сетях. Показатели, снимаемые с мегаомметра, используются, чтобы определить степень изоляционной изношенности для предотвращения неожиданных и нежелательных случаев возгорания.

Принцип работы устройства прост. Он подает напряжение на кабельный участок, который и проверяется в итоге на наличие нормального поступления тока. При утечках, показатели попадают на панель, откуда пользователь и делает выводы. Если утечка больше допустимого значения, значит, речь идет о повреждении изоляции и появления короткого замыкания, недопустимого для того, чтобы была нормальная эксплуатация электрических сетей. В противном случае, кабели могут загореться.
Укомплектован каждый мегаомметр на 1000 и 2500 вольт гибкими медными проводниками, достигающими в длину до трех метров. Каждый прибор оснащен наконечниками в виде крокодила.
Обратите внимание! Отличаются устройства друг от друга модели дизайном и устройством. Аналоговые измерительные устройства обладают динамо машиной, которая вращением специальной ручки делает выработку напряжения, производящего изоляционные замеры. Также есть приборы с аналоговым табло и механической стрелкой. Современные модели оснащены аккумуляторными батареями и блоком питания, имеют цифровое табло, которое отображает изоляционные показатели с памятью.

Инструкция по технике безопасности
Вся измерительная работа сводится к тому, что используется мегомметр для изучения показателя сопротивления при напряжении до 1000 вольт. При рассмотрении светильников, до работы с ними, отключается напряжение, они выключаются из сети. При применении газоразрядных ламп, можно не выкручивать, а только убрать стартеры.

Важно до начала контрольных измерений проверить прибор, определив показания при разомкнутом и замкнутом проводнике. В первом случае должно появится бесконечное сопротивление, а во втором случае — значение около нуля.
Затем необходимо обесточить кабель. Чтобы убедиться в том, что напряжение отсутствует, нужно использовать указатель напряжения, испытанный на подключенном к участку цепи электрической установки.
Потом нужно заземлить токоведущие жила кабеля и при измерении его надеть диэлектрического вида резиновые защитные перчатки.
Обратите внимание! Прикасаться к токоведущим элементам запрещено!
Сопротивление можно проверить только по отдельной фазе. Если есть отрицательный результат, необходима проверка изоляции в участке фазы и земли.
Выполняя измерения, необходимо полное следование инструкции, разработанной на предприятии. Воспрещено начинать работу, не убедившись в том, что отсутствует напряжение. Коммутация должна быть осуществлена только в том случае, если обесточены токоведущие части и использованы средства защиты.

В целом, сопротивление изоляции — параметр, который нужно измерять при выходе из строя кабели или в качестве профилактики при помощи мультиметра и других доступных способов. Важно при этом полностью следовать инструкции и соблюдать технику безопасности, чтобы все измерения проходили без ущерба для здоровья.
Сопротивление изоляции: методика измерения, используемые приборы

Как любое оборудование, техника, со временем из строя начинают выходить и электрические кабели различных видов. Одной из методик определение запаса прочности кабеля и выявления дефектов является измерение сопротивления изоляции. В этой статье рассказывается о том, что это, когда и как оно проводится.
Обследование электропроводки
В каждой организации, в ведении которой находится электроустановки, должен быть ответственный за электрохозяйство. В его обязанности входит составление планово-предупредительных работ по ремонту этого оборудования, а также проведения периодических испытаний и измерений, обследования электропроводки. Периодичность таких измерений, как правило, составляется на основе требований ПТЭЭП. Например, по поводу измерения сопротивления изоляции там сказано, что испытания стоит проводить 1 раз в 3 года.
Что такое измерение сопротивления изоляции
Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.
Допустимое сопротивление для различного оборудования
Основным руководящим документом является ПТЭЭП, в котором приводится периодичность испытаний, величина испытательного напряжения и норма значения сопротивления для каждого вида электрооборудования (ПТЭЭП приложение 3.1, таблица 37). Ниже приводится выдержка из документа.
Не стоит путать сопротивление электрических кабелей с сопротивлением коаксиального кабеля и волновым сопротивлением кабеля, т.к. это относится к радиотехнике и там действуют другие принципы подхода к допустимым значениям.
Вопрос электробезопасности
Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:
U – фазное напряжение электроустановки;
RИЗ – сопротивление изоляции электрооборудования;
RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.
Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.
При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.
Методика измерения сопротивления изоляции кабеля
Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.
Приборы для проведения измерений
Для проведения испытаний именно постоянным пульсирующим напряжением наилучшим выбором является мегаомметр. В приборах старых конструкций для получения напряжений использовался встроенный механический генератор, работающий по принципу динамо-машины. Чтобы выдать необходимое напряжение, надо было усиленно крутить ручку. В настоящее время мегаомметры выполняются в виде электронных устройств, работающих от батарей, они имеют компактный размер и удобное программное обеспечение. Современные мегаомметры имеют память, где хранятся несколько испытаний. При каждом измерении проводится автоматический подсчет коэффициента абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 (сопротивление изоляции через 60 сек после начала испытания) на 30-50 % больше, чем R15 (через 15 сек).
Итог
Измерение сопротивления изоляции кабеля – ответственная процедура, от правильности выполнения которой, зависит безопасность, как людей, так и оборудования. Поэтому не стоит пренебрегать этой несложной, но полезной операции. Это поможет сэкономить немало средств.
Измерение сопротивления изоляции мегаомметром: пошаговая методика измерения
Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) — мегаомметры старого образца.
Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства.
Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы

Обозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
- Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
- На отображаемые данные влияет равномерность вращения динамо-машины.
- Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
- Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.

Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Как правильно пользоваться мегаомметром?
Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.
Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.
Испытуемый объект | Уровень напряжения (В) | Минимальное сопротивление изоляции (МОм) |
Проверка электропроводки | 1000,0 | 0,5> |
Бытовая электроплита | 1000,0 | 1,0> |
РУ, Электрические щиты, линии электропередач | 1000,0-2500,0 | 1,0> |
Электрооборудование с питанием до 50,0 вольт | 100,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с номинальным напряжением до 100,0 вольт | 250,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с питанием до 380,0 вольт | 500,0-1000,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Оборудование до 1000,0 В | 2500,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Перейдем к методике измерений.
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
- Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке.
Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Правила безопасности при работе с мегаомметром
При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:
- При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
- Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
- При подключении щупов необходимо касаться их изолированных участков (рукоятей).
- После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
- Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.
Подборка видео по теме
Сопротивление изоляции: допустимые значения измерений, минимальные нормы для кабелей и приборов
Что такое измерение сопротивления изоляции
Замеры сопротивления изоляции электропроводки: периодичность
Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.
Измерительные приборы
Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную). Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль. Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.
Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.
Обратите внимание: Импульсные посылки амплитудой порядка 1-2 кВ генерируются самим же мегаомметром.
Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в «динамо-машине»). Специалисты нередко называют их «стрелочными», что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.
Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.
Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи). Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей. Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.
Цифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением «1800 in».
Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый «продвинутый» мультиметр, ни любой другой подобный ему образец. С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.
Что такое мегаомметр?
Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.
Итак:
- На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.
На фото изображен универсальный мегаомметр
- По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.
Кто и когда имеет право производить замеры мегаомметром
Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.
Итак:
- Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.
Обратите внимание! Наружная электропроводка и проводка, выполненная в особо опасных помещениях, должна проходить замер сопротивления изоляции ежегодно. Кроме того ежегодно проходит проверку электропроводка кранов, лифтов, детских и оздоровительных учреждений.
- Периодичность проверки сопротивления изоляции электропроводки электрических печей составляет 1 раз в полгода. При этом замеры должны производиться во время максимально нагретого состояния печи.
Кроме того раз в полгода следует визуально осматривать состояние заземления печи. Эти же нормы проверки относятся и к сварочным аппаратам.
Как работать с мегаомметром?
Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.
Схема подключения мегаомметра в трехфазной цепи
Обратите внимание! Для работы с мегаомметром во всех электроустановках, на которых предстоит производить замеры, следует снять напряжение. Кроме того следует снять напряжение с соседних электроустановок, к которым возможно случайное прикосновение.
Итак:
- Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
- После этого приступаем непосредственно к замерам. Для замеров трехпроводной однофазной цепи последовательность операций должна быть следующей:
- В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
- После этого включаем все выключатели сети освещения.
- Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
- Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.
Обратите внимание! При выполнении замера должны быть приняты меры по предотвращению повреждения полупроводниковых и микроэлектронных приборов в цепи. Поэтому если в вашей цепи таковые присутствуют, их необходимо «выцепить» до проведения замеров.
- После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
- Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.
- Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.
Подготовка к измерениям
Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:
- Мегаомметры типа М4100, имеющие до пяти модификаций.
- Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
- Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
- Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).
Мегаомметр М4100Мегаомметр-Ф-4100Мегаомметр-ЭС-02021ГЦифровой измеритель Fluke 1507
Важно! Для замеров берутся только предварительно поверенные приборы, обязательно имеющие лицензию производителя.
Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.
Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.
Причины повреждения изоляции кабелей
Можно выделить основные причины повреждения изоляции кабелей:
- высокая влажность воздуха;
- резкие перепады температур;
- механические повреждения, возникающие во время монтажа или в процессе эксплуатации;
- физический износ.
Виды проверок изоляции кабелей
Для оценки состояния изоляции кабелей проводится два вида испытаний:
- Проверка электрической прочности изоляции. Она выполняется при повышенном напряжении с помощью пробойной установки, в состав которой входит повышающий трансформатор. Как правило, этот вид испытания проводится в лаборатории.
- Измерение сопротивления изоляции постоянному току. Для его проведения нужен только мегаомметр. Этот вид испытаний отличается мобильностью и может выполняться без привязки к стационарной лаборатории.
Используемые методы испытаний
Еще до того, как проверить состояние изоляции – важно определиться с объектом, на котором требуется оценить ее качество. Это могут быть:
- Электрическая проводка.
- Силовые кабели высокого напряжения.
- Низковольтные линии электропередач.
- Контрольные провода.
Для каждой из этих электротехнических категорий выбираются индивидуальные методики измерения сопротивления изоляции. Рассмотрим все перечисленные варианты более подробно.
Электропроводка
Перед началом измерительных процедур электропроводка и распределительные коробки осматриваются на предмет отсутствия разрывов и явных разрушений. После этого обследуются места подсоединения проводов к типовым розеткам и выключателям.
Важно! Начинать замеры сопротивлений изоляции допускается лишь после того, как проводка полностью обесточена, а все потребители на объекте отключены от нее.
Измерение сопротивления изоляции электропроводки с помощью цифрового прибора Fluke-1507
В однофазной сети для определения искомого параметра потребуется провести следующие операции:
- Сначала щупы мегаомметра подключаются между фазной и нулевой жилами проводки.
- Затем определяется сопротивление изоляции между фазной и центральной жилой защитного заземления.
- Количество проведенных измерений соответствует комплекту проводов в линии.
Если при снятии показаний мегаомметр показывает сопротивление менее 0,5 Мом – электрическую линию придется разбить на более короткие отрезки. По результатам последующих обследований каждого из них находится участок с неудовлетворительным качеством изоляции. Его в последствии нужно будет полностью заменить.
Высоковольтные силовые кабели (подготовка)
Перед измерением изоляции силового кабеля последний проверяется на отсутствие на нем опасных напряжений. Кроме того, для подготовки измерительной схемы потребуется проделать следующие операции:
- Прежде всего, с токоведущих жил посредством переносного заземления нужно снять остаточный заряд.
- Затем кабель полностью очищается от пыли и грязи, мешающих измерительному процессу.
- После этого потребуется ознакомиться с паспортными данными кабеля (там указывается искомый параметр, полученный по результатам заводских испытаний).
- Последняя операция необходима для того, что заранее определиться с рабочим пределом, выставляемом на приборе.
Подготовка кабельной линии к проведению измерений сопротивления изоляции
Важно! Перед измерением сопротивления изоляции кабеля обязательно проведение контрольной проверки мегаомметра на исправность.
Эта операция состоит в контроле показаний по шкале прибора при замкнутых и разомкнутых измерительных концах. В первом случае стрелка смещается ближе к «нулю», а во втором – показывать «бесконечность».
Силовые кабели (измерения)
Измерение сопротивления изоляции мегаомметром начинается с контрольной проверки каждой из фаз по отношению к заземленной стальной оболочке. И лишь после этого проверяется сопротивление между отдельными жилами (фото слева). В процессе снятия показаний недопустимо чтобы измерительные концы соприкасались между собой, а также контачили с заземляющими конструкциями и стальной оболочкой.
а) измеряется сопротивление изоляции между фазой и заземленной оболочкой кабеля, б) замер сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».
Если обнаружится, что сопротивление изоляции ниже допустимого уровня – в соответствие с требованиями ПУЭ проводится дополнительные замеры. Они предполагают проведение измерений изоляции всех фаз по отношению к земле и оценку величины проводимости между фазными проводниками.
Обратите внимание: Для повышения точности снятия показаний, указывающих на величину сопротивления изоляции проводов, делается несколько замеров.
Их общее число варьируется: для 3-х жильного кабеля в пределах 3-6 измерений, а для пятижильного может потребоваться 4, 8 или даже 10 подходов.
Поскольку для трехфазных цепей существует несколько схем измерений – по тому же паспорту следует ознакомиться с предлагаемым производителем вариантом. До момента индикации точных показаний на шкале мегаомметра согласно инструкции должно пройти не более 60 секунд (с момента подключения концов и подачи высокого напряжения). Если за это время из-за высокой влажности, например, определить показания не удалось (стрелка не отклонилась на расчетное значение) – операцию придется провести еще раз.
Перед повторным испытанием следует снова снять остаточный заряд путем наложения заземления. Затем потребуется переключить прибор на нужный предел и повторить контрольные замеры. Согласно правилам ТБ эту операцию необходимо проводить в диэлектрических перчатках. рекомендуется следовать указаниям п.п. 1.7.81, 2.1.35 ПУЭ, в которых оговариваются условия безопасной работы. Основные из них приведены ниже.
- у нулевых рабочих и защитных шин изоляция должна быть равноценна защитному покрытию фазных проводников;
- со стороны источников питающего напряжения и его приемника нулевые проводники следует отсоединять от заземленных элементов цепи;
- проведение замеров в силовых электропроводках проводится только при полностью снятом напряжении, выключенных вводных автоматах или рубильниках.
Последний пункт дополняется обязательным требованием вынуть предохранители, отключить все имеющиеся приемники и вывернуть электролампы. Предлагаемые в инструкции схемы замеров различаются только их количеством (4 и 8 вместо 3 и 6) и необходимостью использования защитной клеммы «Экран» на мегаомметре.
Низковольтные силовые кабели
При работе с низковольтными силовыми линиями они в первую очередь проверяются на предмет отсутствия на их элементах опасных напряжений. Подобно уже рассмотренным высоковольтным кабелям перед обследованием этих изделий потребуется проделать следующие операции:
- Сначала с токоведущих жил при помощи переносного заземления снимается опасный остаточный заряд.
- По завершении этой операции оболочка кабеля и его рабочие жилы полностью очищаются от пыли и грязи.
- Затем изучаются документы (паспорт, например), где указывается нормируемое сопротивление изоляции для испытуемого образца.
- Последняя операция проводится с целью примерной оценки измеряемой величины и выбора нужного предела измерения на приборе.
Для ее проведения берется мегаомметр, рассчитанный на напряжение генерации 1000 Вольт. По завершении всех подготовительных операций переходят непосредственно к измерениям. Их порядок может быть представлен в виде следующей последовательности действий:
- Сначала измеряется искомое сопротивления между фазными жилами испытуемой кабельной линии («А»-«В», «В»-«С» и «А»-«С»).
- Затем по очереди оценивается состояние изоляция каждой из фаз относительно нулевого провода (N).
- Далее следует последовательность измерений между каждой фазой и заземляющим проводом PE (проводится при проверке трехфазного пятижильного проводника).
- Для проведения последней операции нулевой провод отсоединяется от заземляющей шинки, после чего измеряются сопротивления между жилами N и PE.
По завершении каждого очередного действия необходимо «снимать» остаточный заряд уже описанным ранее способом.
Контрольные кабели (подготовка)
Проверить сопротивление в этом случае удастся только при выполнении следующих требований:
- Температура окружения должна укладываться в диапазон от –30 до +50 градусов (при влажности до 90%).
- Они влияют на допустимость работы с тем или иным образцом мегаомметра в конкретной ситуации.
- Условия измерения (протяженность контролируемого кабеля, в частности) и рабочее напряжение выбираются в зависимости от его марки.
- Если паспорт на кабельное изделие отсутствует – к нему согласно ПУЭ (табл. 1.8.39) прикладывается испытательное напряжение от 0,5 до 1 кВ.
Обратите внимание: Допускается проводить испытания вместе со всей подключенной к кабелю аппаратурой (магнитными пускателями и защитными реле, установленными в линии).
Перед проверкой сопротивления обязательно знакомство с безопасными приемами работы с кабелем. Они сводятся к соблюдению следующих правил:
- к замерам под напряжениями до 1 кВ допускаются только специалисты с 3-й группой допуска или выше;
- исследуемый кабель обязательно отсоединяется от электросети, после чего с него удаляется остаточный заряд;
- перед началом измерительных операций необходимо побеспокоиться о том, чтобы поблизости от этого места не было посторонних лиц.
К токоведущим жилам напряжение прикладывается посредством щупов с изолированными ручками типа «держатели». Помимо этого в целях безопасности запрещено прикасаться к токопроводящим шинам, к которым подсоединен включенный мегаомметр. По завершении текущих испытаний с контрольной части кабеля обязательно снимается остаточный заряд. Для этого используются переносные заземления или активируется специальная функции измерительного прибора (она имеется в некоторых моделях).
Контрольные кабели (порядок работ)
Порядок испытания изоляционной защиты контрольных кабелей аналогичен положениям, разработанным для низковольтных линий проводки (до 1 кВ). Исключением является пункт об отключении токопроводящих жил от нагрузочного оборудования. Из-за малой величины передаваемого сигнала делать этого в данной ситуации не обязательно.
Для проведения испытаний потребуется цифровой или аналоговый мегаомметр, по паспорту рассчитанный на рабочие напряжения от 0,5 до 2,5 кВ. Порядок проведения измерений выглядит в этом случае так:
- Сначала с проверяемой стороны кабеля выводы токопроводящих жил аккуратно разделываются и зачищаются, а затем разводятся одна от другой на некоторое удаление (порядка 5-10 см).
- Далее каждая жила поочередно подключается к «+» мегаомметра, а все остальные жилы скручиваются и подсоединяются к «земле».
- Туда же подключается второй вход («–») прибора (см. рисунок ниже).
- Затем на рабочий кабель подается испытательное напряжение.
- При использовании современных цифровых приборов потребуется внешний источник питания (электрическая сеть или аккумулятор).
- Испытания продолжаются не менее минуты, по истечении которой результат фиксируется по шкале, а затем заносится в учетный журнал.
- Далее все описанные операции проделываются с каждой сигнальной жилой отдельно (она подключается к прибору, а все другие скручиваются и соединяются со вторым контактом, который в свою очередь связан с землей.
По окончании измерений с рабочих жил снимают остаточный заряд, а мегаомметру дают «отстояться» до следующей серии испытаний. Длительность отводимой на это паузы зависит от конкретного типа и марки прибора. Следующие измерения проводятся с учетом периодичности проведения испытания изоляции.
Методика измерения сопротивления изоляции кабеля
Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм2. Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
- Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к
- гнезду «З». Подобная схема подключения приведена на рисунке.
Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Вопрос электробезопасности
Почему перегорают светодиодные лампы
Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:
U – фазное напряжение электроустановки;
RИЗ – сопротивление изоляции электрооборудования;
RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.
Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.
При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.
Требования безопасности
Одно из основополагающих правил при исследовании изоляции заключается в том, что приступать к работе, не удостоверившись в отсутствии напряжения на измеряемом участке, нельзя. Прибор, используемый для испытаний, должен быть поверенным или хотя бы быть сертифицированным.
Использовать необходимо лишь только тот мегомметр, выдаваемое напряжение которого соответствует установленным нормам. Так, для сетей или оборудования с напряжением до 50 В, используется тестер, выдающий 100 В. Применение прибора с меньшим значением не даст правдивости информации о состоянии участка, а большего — может привести к повреждениям.
Измерение сопротивления мегомметром необходимо выполнять только на отключенных токоведущих частях, с обязательным снятием остаточного заряда. При этом заземление с токопроводящих частей снимается лишь после подключения тестера. Соединительные провода подсоединяются с помощью изолирующих штанг. При работе прикасаться к токоведущим частям, даже в диэлектрических перчатках, запрещено.
Требования безопасности
Согласно действующим межотраслевым правилам по охране труда при эксплуатации ЭУ, для проверки состояния изоляционного слоя мегомметром должны соблюдаться следующие меры безопасности:
- Замеры должны осуществляться квалифицированными специалистами. К проверке изоляционного слоя кабельной линии напряжением менее 1000 Вольт допускаются лица с III, а при напряжении более 1000 В с IV группой по электробезопасности.
- Пользоваться прибором необходимо в диэлектрических перчатках.
- Установка зажимов мегаомметра должна производиться только на заземленный электрический проводник.
- По завершении измерения требуется снять потенциал с проводов, посредством установки заземления.
Измерение проводится в диэлектрических перчатках
Работы с измерительным устройством выполняются по распоряжению, наряду-допуску или в порядке текущей эксплуатации, в зависимости от уровня напряжения. Проверка изоляционного покрытия установками с подачей высокого напряжения выполняется лицами с правом проведения высоковольтных испытаний.
Периодичность замеров сопротивления изоляции электропроводки
Состояние изоляционной оболочки, проложенной на открытом воздухе электропроводки, должно проверяться каждые двенадцать месяцев. При других вариантах прокладки — раз в тридцать шесть месяцев.
Проверка изоляции электропроводки в частном доме
Своевременно выявленное ухудшение качества изоляционного покрытия электрических проводников позволит предотвратить аварию или несчастный случай. Проведение требуемых работ должно производиться с соблюдением всех мер безопасности.
Каким должно быть сопротивление изоляции
Величина сопротивления изоляции для разных типов кабелей заложена в двух документах:
- Правилах технической эксплуатации электроустановок потребителей (ПТЭЭП): пункт 6.2 и таблица 37.
- Правилах устройства электроустановок (ПУЭ): пункт 1.8.37 и таблица 1.8.34.
При этом принято классифицировать кабели по назначению:
- Высоковольтные силовые. Такие кабели рассчитаны на напряжение более 1000 В. Для них нормированного значения сопротивления изоляции нет. Считается, что оно должно быть не менее 10 МОм.
- Низковольтные силовые. Кабели этого вида рассчитаны на напряжение менее 1000 В. У них минимальный порог сопротивления изоляции должен быть не ниже 0,5 МОм.
- Сигнальные, контрольные и общего назначения. Такие кабели используются для подключения распределительных или защитных устройств, питания электроприводов, монтажа цепей управления и прочего. Для них общепринятый показатель сопротивления изоляции должен быть не ниже 1 МОм. Более точные цифры должны быть указаны в сопроводительной документации.
Замеры сопротивления изоляции силовых кабелей выполняются при напряжении 2500 В, всех остальных – 500–2500 В.
Нормы сопротивления изоляции для различных кабелей.
Для определения норма сопротивления изоляции кабелей, нужно провести их классификацию. Кабели по функциональному назначению разделяются на:
- выше 1000 (В) — высоковольтные силовые
- ниже 1000 (В) — низковольтные силовые
- контрольные кабели — (цепи защиты и автоматики, вторичные цепи РУ, цепи управления, цепи питания электроприводов выключателей, отделителей, короткозамыкателей и т.п.)
Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных кабелей осуществляется мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются при напряжении 500-2500 (В).
Каждый кабель имеет свои нормы сопротивления изоляции. Согласно ПТЭЭП и ПУЭ.
Высоковольтные силовые кабели выше 1000 (В) — сопротивление изоляции должно достигать показателя не ниже 10 (МОм)
Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно достигать отметки ниже 0,5 (МОм)
Контрольные кабели — сопротивление изоляции не должно опускаться ниже 1 (МОм)
Источники
- https://amperof.ru/elektromontazh/electroprivodka/soprotivlenie-izolyatsii.html
- https://FishkiElektrika.ru/soprotivlenie-izolyatsii-metody-izmereniya-normy
- https://Elektrik-a.su/izolyaciya-i-zashhita-ot-perenapryazheniya/soprotivlenie/zamer-soprotivleniya-izolyacii-elektroprovodki-28
- https://tze1.ru/articles/detail/kak-proverit-izolyatsiyu-kabelya/
- https://www.asutpp.ru/izmerenie-soprotivleniya-izolyatsii-megaommetrom.html
- https://proagregat.com/kipia/normy-izolyatsii-i-izmereniya-soprotivleniya-kabeley/
- https://220.guru/electroprovodka/provoda-kabeli/zamer-soprotivleniya-izolyacii.html
- https://www.calc.ru/Soprotivleniye-Izolyatsii-Kabelya.html
Измерение сопротивления изоляции. Методы и приборы
Мегаомметр – измерительный прибор для профессионального использования. Но в определенных ситуациях он может применяться и в бытовых условиях. Прежде всего это касается случаев необходимости проверки состояния электрической проводки в квартире, частном доме.
Применение в таких случаях мультиметра является неоправданным. Это связанно с тем, что это приспособление позволяет обнаружить наличие проблемы, но не оценить ее масштабы. В этом плане мегаомметр считается более эффективным.
Содержание статьи
Что это такое мегаомметр
Мегаомметр – прибор, что позволяет определять большие уровни сопротивления напряжения в сети. Основная особенность данного устройства касается того, что в процессе исследования в цепь поддается относительно высокие напряжения.
Существует 2 чаще всего использующихся вида мегаомметров, такие как:
- Индукторный. В таких приборах для получения испытательных высоких напряжений используется встроенный электромеханический генератор, который именуется индуктором. В нем применяется постоянное напряжение. Работает данное устройство посредством ручного управления от рукоятки.
- Безындукторный. В таких приборах источником постоянного высокого испытательного напряжения является электронный инвектор, оборудованный выпрямителем. Его питание происходит благодаря встроенным в корпус аккумуляторов. Вместо них могут быть применены сменные гальванические элементы.
Индикаторы в индукторных и безындукторных мегаомметров тоже отличаются. В первом случае производители данных устройств используют стрелочные логометры, во втором – магнитоэлектрические приборы или же жидкокристаллические дисплеи.
Принцип работы прибора (мегаомметр)
Действие мегаомметров основано на определении силы тока и напряжения. В итоге прибор выдает соотношение этих 2 величин на том или ином отрывке. Зависимо от специфики конструкции, показателей мощности само напряжение может разительно меняться.
В комплекс сустройством включаются измерительные щупы. Они имеют достаточно простую конструкцию. В нее входят провода и наконечники. Один из них предназначен для подсоединения к гнезду устройства, другой же имеет вид «крокодила», использующегося для прочного крепления.
Перед использованием необходимо зафиксировать щупы в соответствующих гнездах устройства. После этого «крокодилами» следует подключить приспособление к измеряемому участку цепи. Вслед за этим происходит выработка высокого напряжения, что поступает на исследуемый объект.
Как подключить мегаомметр
Для получения корректных данных сопротивления, во время подключения необходимо соблюдать определенные правила. Прежде всего нужно акцентировать внимание на том, что на корпусе устройства присутствует 3 гнезда, которые обозначены определенными буквами, такими как:
- Э – экран;
- Л – линия;
- З – земля.
Как правило, каждый мегаомметр имеет в комплекте 3 щупа. К первому подсоединяются два наконечника. Используется только, когда имеется необходимость исключить токовую утечку. Присоединяется данный щуп к экрану, если таковой имеется. Остальные же щупы должны быть соединены с теми гнездами, которые соответствуют маркировкам данных приспособлений.
Когда надо померить только сопротивление изоляции без учета экрана, следует подключить лишь два щупа. Их надо подсоединять в гнезда З и Л. Другие их стороны должны быть подсоединены к объекту посредством «крокодилов». Это происходит следующим образом:
- при тестировании на пробой между кабелями «крокодилы» крепятся к исследуемым проводам;
- для определения пробоев на «землю» «крокодилы» прикрепляются к «земле» и жиле, что есть токоведущей.
Чаще проверка проводится на выявление пробоя. Это обусловлено тем, что тестирование экранизированной оболочки в обычных квартирах не проводится.
Как мегаомметром измерить сопротивление кабельных линий до 1 кВ
Мегаомметры используются для опредения сопротивления кабелей до и выше 1 кВ. Одножильные провода проверить при помощи такого прибора довольно легко – в сравнении с многожильными. Чем их больше, тем более масштабной будет исследование. Это обусловлено тем, что все линии надо проверять в отдельности от остальных.
При выборе контрольного напряжения следует основываться на эксплуатационном напряжении. Если кабель функционирует при 380 или же 220 В, тестовые показатели необходимо выставить на показатель 1000 В.
Когда необходимо проверить одножильный кабель, один щуп нужно прикрепить к жиле, оставшийся – на экран. В тех случаях, когда экран отсутствует, второй щуп стоит прикрепить к «земле». После этого следует подать напряжение от прибора.
Если в итоге будет получено не меньше чем 500 кОм, можно делать вывод о том, что линия исправна. В ситуациях, когда сопротивление оказывается меньшим, проводник нужно перестать использовать. Подобный результат тестирование говорит о том, что изоляция кабеля повреждена.
Если происходит проверка линии с несколькими жилами, их нужно исследовать отдельно друг от друга. Во время этого остальные кабели могут быть связаны между собой жгутом. В тех ситуациях, когда требуется проверка пробоя на «землю», к незадействованным жилам прикрепляется линия заземления. Когда берется броня или экран, они тоже должны быть подкреплены к этому пучку. В нем следует обеспечить высокую плотность соприкосновения кабелей.
Отдельно стоит разобраться исследовании сопротивления изоляционного слоя в розетках. Для этого предварительно из них нужно отключить приборы. Дополнительно нужно убрать питание посредством распределительного щитка.
Один щуп должен быть подсоединен на «землю», другой – на фазу. Напряжение на устройстве ставится на показатель в 1000 В. Далее проводится проверка. Если будет получен результат боле 500 кОм (0,5 мОм), то изоляция полностью исправна. Таким же образом нужно в итоге проверить все фазы.
Измерение сопротивления обмоток машин (электродвигателей) и аппаратов
Для того чтобы замерить сопротивления обмоток в различных аппаратах при помощи мегаомметра, необходимо следовать следующему алгоритму действий:
- Обесточивание двигателя. Это необходимо для повышения безопасности проведения работ.
- Открытие крышки двигателя со всеми выводами использующихся обмоток.
- Установка напряжения для тестирования. Если двигатель эксплуатируется при напряжении до 1000 В, для проверки достаточно установить показатель в 500 В.
- Прикрепление одного щупа на корпус моторного отсека, другого – к имеющимся на устройстве к одному из выходов.
Также дополнительно необходимо убедиться в правильности соединения обмоток. Это можно сделать посредством подключения щупов парами.
Замер сопротивления обмоток трансформатора
Любой замер сопротивления обмоток трансформатора должен производиться между ними и корпусом («землей»), а также непосредственно между собой. Во втором случае остальные обмотки должны быть отсоединены и заземлены на корпус.
Процесс тестирования может быть начат только в том случае, если напряжение прибора будет не менее 2500 В. Максимальный показатель исследования не должен быть ниже 10000 мОм.
На трансформаторах, у которых предельное напряжение составляет 10 кВ и ниже, разрешается использование мегаомметров с напряжением на 1000 В, когда их максимум исследования не ниже 1000 мОм.
Прежде чем начать тестирование обмотки, ее следует заземлить на время более 2 минут. Если сопротивление не нормируется, необходимо его сравнивать с заводскими параметрами или же с данными, полученными в ходе прежних тестирований.
Также стоит обратить внимание на коэффициент абсорбции. Он тоже может не нормироваться. При этом он обязательно учитывается при рассмотрении результатов исследования. Если температура окружающей среды находится в диапазоне от +10 до +30 градусов Цельсия, он может быть для не увлажненных трансформаторов следующим:
- менее 10000 кВА и напряжением 35 кВ и ниже: 1,3;
- 110 кВ и выше: 1,5-2.
Если трансформатор является увлажненным или же на нем присутствуют локальные повреждения, абсорбционный процент должен быть близок к 1.
Процесс измерения – это ответственная работа, которая позволяет следить за состояние оборудования. Подобные меры способны предотвратить или же минимизировать неблагоприятные последствия повреждения кабельного хозяйства, сумев уберечь при этом электрические приборы от выхода из строя.
Узнайте, как проводится проверка сопротивления изоляции
Служба калибровки и термографического контроля
Переключить меню
перейти к содержанию- Дом
- ОБЯЗАННОСТИ ПО УХОДУ
- Услуги
-
Испытания
- Испытания электрического низкого напряжения
- Тест автоматического включения резерва
- Тест батареи конденсаторов
- Коммерческие электрические испытания
- Тест сопротивления контактов
- Проверка сопротивления контура замыкания на землю
- Earth Ground Test
- Испытание на электробезопасность
- Тест банка нагрузки генератора
- Испытание сопротивления изоляции
- Испытание грозозащитных разрядников
- Тест портативного устройства
- Заводские приемочные испытания
- Тест защитных устройств
- Тест мегомметра
- Live Test
- Проверка целостности
- Испытания и безопасность УЗО
- Тест PSC и тест PFC
- Заводские приемочные испытания
- Испытание распределительного устройства
- Испытания сверхнизкого напряжения
- Тест батареи
- Испытания среднего напряжения
- Тест реле защиты
- Испытания электрического низкого напряжения
-
Калибровка
- Калибровка температуры и влажности
- Калибровочный мармит
- Калибровка шокового охлаждения
- Шоковая заморозка Calibra
- Калибровка температуры и влажности
-
Общие сведения об испытании сопротивления изоляции | EC&M
- Войти
- Регистр
- Поиск
- COVID-19
- Национальный электротехнический кодекс
- Дизайн
- Строительство
- Техническое обслуживание / ремонт / операции
- Безопасность Освещение
- Надежность питания
- Интеллектуальные здания
- Управление энергопотреблением
- Обучение
- Возобновляемые источники энергии
- Поиск и поставка продукции
- Электротехнические испытания
- Несчастные случаи и расследования
- Топ 40 фирм по проектированию электрических систем
- Топ 50 электрических подрядчиков
- Отрасль Статьи
- Вебинары
- Электронные книги Библиотека
- Отраслевые эксперты и консультанты
- Старые выпуски цифровых материалов
- О нас
- Реклама
Руководство для начинающих по тестированию сопротивления изоляции
Мегомметр 1 кВ, обычно используемый в полевых условиях для проверки электрической изоляции. Фотография: Megger
.С помощью мегомметра можно выполнить три различных теста. Хорошее понимание этих общих методов испытаний является важным инструментом в получении способности определять состояние и качество электрической изоляции.
Испытания обычно проводятся путем приложения напряжения постоянного тока (dc) к испытуемому проводнику и измерения тока, протекающего через изоляцию (называемого «током утечки») и в нетоковедущие металлические части оборудования.
1.) Кратковременный или точечный тест
Кратковременный или точечный тест используется для электрических устройств с очень малой емкостью, таких как короткая проводка в доме или электрическая панель.
Поскольку крупное оборудование, как правило, более емкостное, этот тест следует использовать только в качестве приблизительного ориентира для определения качества изоляции при отсутствии базовых данных. Важно отметить, что на показания влияют температура и влажность, а также состояние изоляции.
В этом методе просто подключите мегомметр к проверяемой изоляции и подайте соответствующее испытательное напряжение в течение короткого определенного периода времени (обычно рекомендуется 60 секунд).
Регистрируя эти измерения с течением времени, вы получаете лучшую основу для оценки фактического состояния изоляции. Любой устойчивый нисходящий тренд обычно является верным предупреждением о предстоящих проблемах, даже если значения могут быть выше предлагаемых минимальных значений.
Периодические показания, оказываемые ниже рекомендуемых значений, могут быть приемлемыми, если они согласованы.Рекомендуемые значения сопротивления изоляции при отсутствии стандартов производителя см. В спецификациях технических испытаний ANSI / NETA.
Правило одного мегаома
Как правило, сопротивление изоляции должно составлять приблизительно один МОм на каждые 1000 вольт рабочего напряжения, при минимальном значении один МОм. Это то, что известно как «правило одного мегаома».
Например, двигатель с номинальным напряжением 5000 В должен иметь минимальное сопротивление изоляции 5 МОм.На практике показания в МОм должны быть намного выше этого минимального значения, если изоляция новая или в хорошем состоянии.
2.) Метод сопротивления времени
В отличие от теста на точечное считывание, метод временного сопротивления практически не зависит от температуры и часто может дать вам окончательную информацию без учета прошлых тестов.
Этот метод испытаний иногда также называют «испытанием на поглощение», поскольку он основан на поглощающем эффекте хорошей изоляции по сравнению с эффектом влажной или загрязненной изоляции, что дает более четкое представление о качестве изоляции, даже если точечное считывание показывает приемлемое состояние.
В этом методе подключайте мегомметр так же, как при краткосрочном или точечном тесте, снимая последовательные измерения в определенное время и отмечая различия в показаниях.

Типичные кривые, демонстрирующие эффект диэлектрической абсорбции при испытании "сопротивление времени", выполненном на емкостном оборудовании, таком как обмотка большого двигателя. Фото: Megger US.
Хорошая изоляция показывает постоянное увеличение сопротивления в течение определенного периода времени (примерно от 5 до 10 минут) - это вызвано зарядами, которые образуются на пластинах конденсатора и притягивают заряды противоположной полярности в изоляции, вызывая эти заряды двигаться и, таким образом, потреблять ток.Хорошая изоляция показывает этот эффект заряда в течение периода времени, намного большего, чем время, необходимое для зарядки емкости изоляции.
Проведение испытаний на временное сопротивление больших распределительных устройств, трансформаторов, вводов, двигателей и кабелей - особенно при более высоких напряжениях - требует высоких диапазонов сопротивления изоляции и чистых, постоянных испытательных напряжений. Эти типы оборудования следует проверять с помощью мегомметра, работающего от сети.
3.) Коэффициент диэлектрической абсорбции и индекс поляризации
Отношение двух показаний сопротивления времени (например, 60-секундное показание, деленное на 30-секундное показание) называется коэффициентом диэлектрического поглощения .Если соотношение равно 10-минутному показанию, разделенному на 1-минутное показание, значение называется индексом поляризации .
Эти значения очень полезны для определения качества изоляции. При использовании ручных измерительных приборов намного проще провести тест всего за 60 секунд, сняв первое показание через 30 секунд.
Вы получите наилучшие результаты, выполнив 10-минутный тест с использованием линейного тестового набора, сняв показания через 1 и 10 минут для получения индекса поляризации.Вы можете применить это значение к таблице, приведенной ниже, чтобы получить относительное состояние изоляции.
Любое значение индекса поляризации менее 1.0 должно быть исследовано в соответствии со стандартами приемки и обслуживания NETA / ANSI.
Состояние изоляции | Коэффициент диэлектрической абсорбции | Индекс поляризации |
---|---|---|
Опасно | – | Ниже 1.00 |
Сомнительно / Плохо | от 1,00 до 1,25 | от 1,00 до 2,00 *** |
Хорошо | от 1,40 до 1,60 | от 2,00 до 4,00 |
Отлично | Более 1,60 ** | Выше 4,00 ** |
* Эти значения следует рассматривать как предварительные и относительные - при условии наличия опыта применения метода сопротивления времени в течение определенного периода времени. ** В некоторых случаях для двигателей значения примерно на 20% выше, чем показано здесь, указывают на сухую хрупкую обмотку, которая выйдет из строя при ударах или во время пусков. Для профилактического обслуживания обмотку двигателя следует очистить, обработать и высушить для восстановления гибкости обмотки. *** Эти результаты будут удовлетворительными для оборудования с очень низкой емкостью, такого как короткие участки домашней электропроводки. |
Список литературы
Комментарии
Всего комментариев: 1
Оставить комментарий Войдите или зарегистрируйтесь, чтобы комментировать..Испытание сопротивления изоляции | Цветность
При испытании сопротивления изоляции (IR) измеряется общее сопротивление между любыми двумя точками, разделенными электрической изоляцией. Таким образом, испытание определяет, насколько эффективно диэлектрик (изоляция) сопротивляется прохождению электрического тока. Такие тесты полезны для проверки качества изоляции не только при первом производстве продукта, но и в течение долгого времени, когда продукт используется.
Выполнение таких испытаний через регулярные промежутки времени может выявить надвигающиеся нарушения изоляции до того, как они произойдут, и предотвратить несчастные случаи с пользователем или дорогостоящий ремонт изделия.
Как показано на Рисунке 15, 2-проводное незаземленное соединение является рекомендуемой установкой для тестирования незаземленных компонентов. Это наиболее распространенная конфигурация для тестирования 2-контактных устройств, таких как конденсаторы, резисторы и другие дискретные компоненты.
Как показано на Рисунке 16, для проверки заземленных компонентов рекомендуется двухпроводное заземление. Заземленный компонент - это компонент, в котором одно из его соединений идет на землю, тогда как незаземленный компонент - это компонент, в котором ни одно соединение не идет на землю.Измерение сопротивления изоляции кабеля в водяной бане - это типичное применение 2-проводного заземленного соединения.
Процедура измерения
Проверка сопротивления изоляции обычно состоит из четырех фаз: заряд, выдержка, измерение и разряд. Во время фазы заряда напряжение нарастает от нуля до выбранного напряжения, что обеспечивает время стабилизации и ограничивает пусковой ток тестируемого устройства. Как только напряжение достигнет выбранного значения,
Затем можно позволить напряжениюоставаться на этом уровне до начала измерений.
После измерения сопротивления в течение выбранного времени тестируемое устройство снова разряжается до 0 В во время последней фазы.
Измерители сопротивления изоляцииобычно имеют 4 выходных соединения - заземление, экран, (+) и (-) - для различных применений. Выходное напряжение обычно находится в диапазоне от 50 до 1000 вольт постоянного тока. При выполнении теста оператор сначала подключает DUT, как показано на рисунках 15 или 16.
Прибор измеряет и отображает измеренное сопротивление.При подаче напряжения через изоляцию сразу же начинает течь ток. Этот ток имеет три компонента: ток «диэлектрического поглощения», зарядный ток и ток утечки.
Диэлектрическое поглощение
Диэлектрическое поглощение - это физическое явление, при котором изоляция медленно «поглощает» и сохраняет электрический заряд с течением времени. Это демонстрируется приложением напряжения к конденсатору в течение длительного периода времени, а затем его быстрой разрядкой до нулевого напряжения.Если конденсатор оставить разомкнутым в течение длительного периода, а затем подключить к вольтметру, измеритель покажет небольшое напряжение. Это остаточное напряжение вызвано «диэлектрическим поглощением». Это явление обычно связано с электролитическими конденсаторами.
При измерении ИК-излучения различных пластиковых материалов это явление приводит к увеличению значения ИК-излучения со временем. Завышенное значение IR вызвано тем, что материал медленно поглощает заряд с течением времени. Этот поглощенный заряд выглядит как утечка.
Зарядный ток
Поскольку любое изолированное изделие демонстрирует основные характеристики конденсатора - два проводника, разделенных диэлектриком, приложение напряжения через изоляцию вызывает протекание тока по мере зарядки конденсатора. В зависимости от емкости продукта этот ток мгновенно повышается до высокого значения при приложении напряжения, а затем быстро спадает экспоненциально до нуля, когда продукт полностью заряжается. Зарядный ток спадает до нуля намного быстрее, чем ток диэлектрического поглощения.
Ток утечки
Установившийся ток, протекающий через изоляцию, называется током утечки. Оно равно приложенному напряжению, деленному на сопротивление изоляции. Целью теста является измерение сопротивления изоляции. Чтобы вычислить значение IR, подайте напряжение, измерьте установившийся ток утечки (после того, как токи диэлектрической абсорбции и зарядки снизятся до нуля), а затем разделите напряжение на ток. Если сопротивление изоляции соответствует требуемому значению или превышает его, испытание считается успешным.Если нет, тест не пройден.
.Проверка сопротивления изоляции- проверка сопротивления изоляции производится мегомметром
Тест на сопротивление изоляции - второй тест, требуемый стандартами тестирования электробезопасности.
Тест сопротивления изоляции заключается в измерении сопротивления изоляции тестируемого устройства, при этом фаза и нейтраль замыкаются накоротко. Измеренное сопротивление должно быть выше указанного в международных стандартах предела.
Мегаомметр (также называемый измеритель сопротивления изоляции , тераомметр) затем используется для измерения омического значения изолятора при постоянном напряжении с большой стабильностью.
Для измерения сопротивления высокого значения используются методы измерения тока низкого значения. Источник постоянного напряжения подается на измеряемое сопротивление, и результирующий ток считывается на высокочувствительной цепи амперметра, которая может отображать значение сопротивления.
В нашем ассортименте тестеров сопротивления изоляции используются два типа цепей амперметра, каждая из которых выбирается в зависимости от измеряемых значений сопротивления.
ИСПЫТАНИЕ ИЗОЛЯЦИИ
Его цель - измерение сопротивления изоляции при постоянном напряжении с высокой стабильностью, обычно 50, 100, 250, 500 или 1000 В постоянного тока. Оммическое значение сопротивления изоляции выражается в мегомах (МОм). В соответствии с конкретными стандартами испытание сопротивления изоляции может проводиться при напряжении до 1500 В постоянного тока. Благодаря стабильности источника напряжения можно регулировать испытательное напряжение с шагом в 1 вольт.
Критична стабильность напряжения; нерегулируемое напряжение резко упадет при плохой изоляции, что приведет к ошибочным измерениям.
ЦЕПЬ АККУМУЛЯТОРА
Вход вольтметра, связанный с сопротивлением, образует цепь шунтирующего амперметра. Эта настройка позволяет измерять любое значение I, множество комбинаций чувствительности и значений RI.
Эта схема используется для измерения тока высоких значений, которые соответствуют измерению сопротивления низких значений (от l x l04 Ом до 2,106 Ом).
ЦЕПЬ АМПЕРМЕТРА ОБРАТНОЙ СВЯЗИ
Эта схема чаще всего используется в наших приборах.Он охватывает измерение сопротивления высоких значений выше 2,106 Ом. Принцип показан на диаграмме ниже.
Входной ток проходит через обратную связь Rc.
Низкий уровень тока смещения усилителя незначительно влияет на
нынешний л.
ИЗМЕРЕНИЕ ВЫСОКОГО ЗНАЧЕНИЯ СОПРОТИВЛЕНИЯ
Использование источника постоянного напряжения дает преимущество в виде точного определения значения напряжения, используемого для измерения.Выбор этого напряжения - важный параметр.
Действительно, значение высокого сопротивления зависит от приложенного к нему напряжения. Другие факторы влияют на измерение сопротивления высокого значения. Температура и относительная влажность - два важных параметра, которые влияют на значение сопротивления изолятора. Мы предлагаем на последней модели Sefelec измерение этих двух физических параметров (M1501P). В следующей таблице можно найти приблизительное значение сопротивления изоляционных материалов.
ЗАЩИТНАЯ ЦЕПЬ
Чтобы минимизировать токи утечки, мы предлагаем защитное соединение. Схема защиты позволяет снизить помехи на тестовом образце. Клемма, доступная на передней панели наших приборов, позволяет измерять одно из сопротивлений конфигурации Delta (т. Е. Кабель с двумя проводниками и его внешнее экранирование), так что на результат не влияет наличие двух других шунтов. сопротивления.
* Для этого клемма защиты приближена к потенциалу измерительного входа прибора.
* Значение Rx будет определено с большой точностью, если ток lx, измеренный на входе мегомметра, действительно является током, протекающим через Rx.
* Rp1: обозначает утечку между цепями высокого напряжения (ВН) и землей.
* Rp3 - Rp4: представляют параллельную утечку Rx. Если средняя точка Rp2-Rp4 подключена к ограждению, эти утечки не повлияют на измерение Rx.
* Rp2: не влияет, если ограждение заземлено.
.
FAQs: Руководство по измерению сопротивления
При измерении сопротивления точность - это все. Это руководство - все, что мы знаем о достижении максимально возможного качества измерений.
Индекс
- Введение в измерение сопротивления
- Приложения
- Сопротивление
- Принципы измерения сопротивления
- Методы 4-х контактных соединений
- Возможные ошибки измерения
- Выбор подходящего инструмента
- Примеры применения
- Полезные формулы и диаграммы
- Узнать больше
1.Введение
Измерение очень больших или очень малых величин всегда затруднено, и измерение сопротивления не является исключением. Значения выше 1 ГОм и значения ниже 1 Ом представляют проблемы для измерения.
Cropico - мировой лидер в области измерения низкого сопротивления; мы производим широкий ассортимент омметров низкого сопротивления и принадлежностей, которые подходят для большинства измерительных приложений. В этом справочнике дается обзор методов измерения низкого сопротивления, объясняются распространенные причины ошибок и способы их предотвращения.Мы также включили полезные таблицы с характеристиками проводов и кабелей, температурными коэффициентами и различными формулами, чтобы вы могли сделать наилучший выбор при выборе измерительного прибора и техники измерения. Мы надеемся, что вы найдете это руководство ценным дополнением к вашему набору инструментов.
2. Заявки
Производители компонентов
Резисторы, катушки индуктивности и дроссели - все должны убедиться, что их продукция соответствует указанному допуску по сопротивлению, окончанию производственной линии и контролю качества.
Производители переключателей, реле и соединителей
Требуется проверка того, что контактное сопротивление ниже установленных пределов. Это может быть достигнуто в конце тестирования производственной линии, обеспечивая контроль качества.
Производители кабелей
Необходимо измерять сопротивление медных проводов, которые они производят, слишком высокое сопротивление означает, что токонесущая способность кабеля снижается; слишком низкое сопротивление означает, что производитель слишком великодушен в отношении диаметра кабеля, используя больше меди, чем ему нужно, что может быть очень дорогим.
Установка и обслуживание силовых кабелей, распределительных устройств и устройств РПН
Для этого требуется, чтобы кабельные соединения и переключающие контакты имели минимально возможное сопротивление, что позволяет избежать чрезмерного нагрева стыка или контакта, плохого кабельного соединения или контакта переключателя. вскоре выходят из строя из-за этого нагревающего эффекта. Регулярное профилактическое обслуживание с регулярными проверками сопротивления обеспечивает максимально возможный срок службы.
Производители электродвигателей и генераторов
Требуется определить максимальную температуру, достигаемую при полной нагрузке.Для определения этой температуры используется температурный коэффициент медной обмотки. Сопротивление сначала измеряется при холодном двигателе или генераторе, то есть при температуре окружающей среды, затем блок работает с полной нагрузкой в течение определенного периода времени, а сопротивление измеряется повторно. По изменению значения сопротивления можно определить внутреннюю температуру двигателя / генератора. Наши омметры также используются для измерения отдельных катушек обмотки двигателя, чтобы убедиться, что нет коротких или разомкнутых витков цепи и что каждая катушка сбалансирована.
Автомобильная промышленность
Требование к измерению сопротивления сварочных кабелей для роботов, чтобы гарантировать, что качество сварки не ухудшается, т.
Производители предохранителей
Для контроля качества и измерения сопротивления соединений на самолетах и военных транспортных средствах необходимо убедиться, что все оборудование, установленное на самолетах, электрически подключено к раме, включая оборудование камбуза.Те же требования предъявляются к танкам и другой военной технике. Производители и пользователи больших электрических токов - все должны измерять распределение сопротивления соединений, сборных шин и соединителей к электродам для гальваники.
Железнодорожные коммуникации
Включая трамваи и подземные железные дороги (Метро) - для измерения соединений силовых кабелей распределения, включая сопротивление стыков рельсовых путей, поскольку рельсы часто используются для передачи информации.
3.Сопротивление
Закон Ома V = I x R (Вольт = ток x сопротивление). Ом (Ом) - это единица электрического сопротивления, равная сопротивлению проводника, в котором ток в один ампер создается потенциалом в один вольт на его выводах. Закон Ома, названный в честь его первооткрывателя, немецкого физика Георга Ома, является одним из важнейших основных законов электричества. Он определяет соотношение между тремя фундаментальными электрическими величинами: током, напряжением и сопротивлением. Когда напряжение подается на цепь, содержащую только резистивные элементы, ток течет в соответствии с законом Ома, который показан ниже.
4. Принципы измерения сопротивления
Амперметр Метод вольтметра
Этот метод восходит к основам. Если мы используем батарею в качестве источника напряжения, вольтметр для измерения напряжения и амперметр для измерения тока в цепи, мы можем рассчитать сопротивление с разумной точностью. Хотя этот метод может обеспечить хорошие результаты измерения, он не является практическим решением повседневных задач измерения.
Двойной мост Кельвина
Мост Кельвина является разновидностью моста Уитстона, который позволяет измерять низкие сопротивления.Диапазон измерения обычно составляет от 1 мОм до 1 кОм с наименьшим разрешением 1 мкОм. Ограничения моста Кельвина: -
- требует ручной балансировки
- чувствительный нуль-детектор или гальванометр требуется для определения состояния баланса
- измерительный ток должен быть достаточно высоким для достижения достаточной чувствительности
Двойной мост Кельвина обычно заменяется цифровыми омметрами.
DMM - двухпроводное соединение
Простой цифровой мультиметр может использоваться для более высоких значений сопротивления.Они используют двухпроводной метод измерения и подходят только для измерения значений выше 100 Ом и там, где не требуется высокая точность.
При измерении сопротивления компонента (Rx) через компонент проходит испытательный ток, и измерительный прибор измеряет напряжение на его выводах. Затем измеритель рассчитывает и отображает полученное сопротивление и называется двухпроводным измерением. Следует отметить, что измеритель измеряет напряжение на своих выводах, а не на компоненте.В результате падение напряжения на соединительных выводах также включается в расчет сопротивления. Измерительные провода хорошего качества будут иметь сопротивление примерно 0,02 Ом на метр. В дополнение к сопротивлению выводов, сопротивление соединения выводов также будет включено в измерение, и оно может быть таким же высоким или даже выше, чем сопротивление самих выводов.
При измерении больших значений сопротивления эту дополнительную ошибку сопротивления проводов можно игнорировать, но, как вы можете видеть из приведенной ниже таблицы, ошибка становится значительно выше по мере уменьшения измеренного значения и совершенно неприемлемой ниже 10 Ом.
ТАБЛИЦА 1
Примеры возможных ошибок измерения
RX | Сопротивление измерительного провода R1 + R2 | Сопротивление подключения R3 + R4 | Rx, измеренный на клеммах DMM = Rx + R1 + R2 + R3 + R4 | Ошибка | Ошибка% |
1000 Ом | 0,04 Ом | 0.04 Ом | 1000,08 Ом | 0,08 Ом | 0,008 |
100 Ом | 0,04 Ом | 0,04 Ом | 100,08 Ом | 0,08 Ом | 0,08 |
10 Ом | 0,04 Ом | 0,04 Ом | 10,08 Ом | 0,08 Ом | 0,8 |
1 Ом | 0,04 Ом | 0.04 Ом | 1,08 Ом | 0,08 Ом | 8 |
100 мОм | 0,04 Ом | 0,04 Ом | 180 мОм | 0,08 Ом | 80 |
10 мОм | 0,04 Ом | 0,04 Ом | 90 мОм | 0,08 Ом | 800 |
1 мОм | 0,04 Ом | 0,04 Ом | 81 мОм | 0.08 Ом | 8000 |
100 мкОм | 0,04 Ом | 0,04 Ом | 80,1 мкОм | 0,08 Ом | 8000 |
Для измерения истинного постоянного тока резистивные омметры обычно используют 4-проводное измерение. Постоянный ток проходит через приемник и внутренний эталон омметра. Затем измеряется напряжение на Rx и внутреннем стандарте, и отношение двух показаний используется для расчета сопротивления.С помощью этого метода ток должен быть стабильным только в течение нескольких миллисекунд, необходимых для того, чтобы омметр сделал оба показания, но для этого требуются две схемы измерения. Измеряемое напряжение очень мало, и обычно требуется чувствительность измерения мкВ.
В качестве альтернативы используется источник постоянного тока для пропускания тока через Rx. Затем измеряется падение напряжения на Rx и рассчитывается сопротивление. Для этого метода требуется только одна измерительная цепь, но генерирующий ток
.