Коэффициент остаточного разрыхления грунта таблица
Коэффициент разрыхления грунта (таблица, снип)
При некоторых строительных работах происходит разработка грунта для закладки фундамента.Для планирования работ, связанных с выемкой и вывозом земли, следует учитывать некоторые особенности: разрыхление, влажность, плотность.
Представленная ниже таблица коэффициента разрыхления грунта поможет вам определить увеличение объема почвы при ее выемке из котлована.
Виды
- Скальные, каменные, горные и сцементированные породы – разработка возможна лишь с применением дробления или с использованием технологии взрыва.
- Глина, песок, смешанные типы пород – выборка производится вручную или механизировано с помощью бульдозеров, экскаваторов или другой специализированной техники.
Свойства
- Разрыхление – увеличение объема земли при выемке и разработке.
- Влажность – соотношение массы воды, которая содержится в земле, к массе твердых частиц. Определяется в процентах: грунт считается сухим при влажности менее 5%, превышающий отметку 30% – мокрый, в диапазоне от 5 до 30% – нормальная влажность. Чем более влажный состав, тем более трудоемкий процесс его выемки, исключением является глина (чем более сухая – тем сложнее ее разрабатывать, слишком влажная – приобретает вязкость, липкость).
- Плотность – масса 1 м3 грунта в плотном (естественном) состоянии. Самые плотные и тяжелые скальные породы, наиболее легкие – песчаные, супесчаные почвы.
- Сцепление – величина сопротивления к сдвигу, песчаные и супесчаные почвы имеют показатель – 3–50 кПа, глины, суглинки — 5–200 кПа.
Исходя из строительных норм и правил (СНИП), коэффициент разрыхления грунта (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Проанализировав таблицу, можно сказать, что первоначальный коэффициент разрыхления грунта прямо пропорционален диапазону плотности, проще говоря, чем более плотная и тяжелая почва в природных условиях, тем больший ее объем при разработке.
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
Как рассчитать проведение необходимых работ
Для расчета необходимых работ следует знать геометрические размеры планируемого котлована. Далее умножьте коэффициент первоначального разрыхления на объем земли в природном состоянии.
В результате вы получите объем, который будет изъят из строительного карьера. Теперь очень просто рассчитать количество изъятой земли для складирования, погрузки, транспортировки для утилизации.
Посмотрите видео: ВИДЫ ГРУНТА. ГЕОЛОГИЧЕСКИЙ АНАЛИЗ УЧАСТКА
Коэффициент остаточного разрыхления грунта по ЕНиР
Коэффициент остаточного разрыхления грунта — это коэффициент показывающий увеличение объема грунта при его разработке с последующей укладке с уплотнением в насыпь (обратную засыпку фундаментов) по сравнению с объемом грунта в состоянии естественной плотности.Или проще, коэффициент показывающий сколько грунта останется после разработки грунта и обратной засыпки с уплотнением в тот же котлован или траншею.
Не путать с коэффициентом первоначального разрыхления грунта и коэффициентом уплотнения грунта !
Коэффициент остаточного разрыхления грунта нормируется в приложении 2 ЕНиР Е2 В1 (Земляные работы. Механизированные и ручные земляные работы.), так как в других нормативных документах данной информации нет (СП 45.13330 2017 (2011) Земляные сооружения основания и фундаменты и ГЭСНах).
Таблица прил. 2 ЕНиР Е2В1 — Показатели остаточного разрыхления грунтов и пород
№ п/п | Наименование грунта | Остаточное разрыхление грунта, % |
---|---|---|
1 | Глина ломовая | 6-9 |
2 | Глина мягкая жирная | 4-7 |
3 | Глина сланцевая | 6-9 |
4 | Гравийно-галечные грунты | 5-8 |
5 | Растительный грунт | 3-4 |
6 | Лесс мягкий | 3-6 |
7 | Лесс твердый | 4-7 |
8 | Мергель | 11-15 |
9 | Опока | 11-15 |
10 | Песок | 2-5 |
11 | Разборно-скальные грунты | 15-20 |
12 | Скальные грунты | 20-30 |
13 | Солончак и солонец мягкие | 3-6 |
14 | Солончак и солонец твердые | 5-9 |
15 | Суглинок легкий и лессовидный | 3-6 |
16 | Суглинок тяжелый | 5-8 |
17 | Супесь | 3-5 |
18 | Торф | 8-10 |
19 | Чернозем и каштановый грунт | 5-7 |
20 | Шлак | 8-10 |
В таблице указан процент увеличения объема грунта при его разрыхлении и последующего уплотнения!
Например: Необходимо определить объем лишнего грунта обратной засыпки фундаментов здания для вывоза его на автосамосвалах, если известно, что геометрический объем котлована Vгеом.котлована равен 1000 м3 , грунт в котловане — суглинок тяжелый, геометрический объем фундаментов Vфунд =600 м3.
Определяем геометрический объем обратной засыпки грунта:
Vгеом.обр.зас.= Vгеом.котлована— Vфунд =1000-600=400 м3.
Согласно таблице, остаточное увеличение суглинка принято 6,5 % (как среднее между 5 и 8 %), следовательно коэффициент остаточного разрыхления равен:
kостат.разр. =6,5%/100%+1=1,065
Определяем необходимый объем обратной засыпки грунта:
Vтреб.обр.зас.= Vгеом.обр.зас. / kостат.разр.=400/1,065=375.6 м3.
Объем лишнего грунта для вывоза с учетом коэффициента первоначального разрыхления, составит:
Vвывоза= (Vгеом.обр.зас. — Vтреб.обр.зас.) х kпервонач.разр.=(400-375.6)х1.27=24.4х1.27=30.99м3
Коэффициент первоначального разрыхления грунта
Коэффициент уплотнения грунта
Как достичь требуемого коэффициента уплотнения?
Коэффициент разрыхления грунта: таблица по СНИП.
Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована.
Все грунты с точки зрения строительства можно разделить на две группы:
- Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
- Несцементированные — выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.
На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:
- Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
- Сцепление – сопротивление сдвигу;
- Плотность — то есть масса одного кубического метра грунта в естественном состоянии;
- Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.
Таблица разрыхления грунта.
Исходя из строительных норм и правил (СНИП), КРГ (первоначальный), показатель плотности в соответствии категории, приведены в таблице:
Категория | Наименование | Плотность, тонн / м3 | Коэффициент разрыхления |
І | Песок влажный, супесь, суглинок, разрыхленный | 1,4–1,7 | 1,1–1,25 |
І | Песок рыхлый, сухой | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, средний -мелкий гравий, легкая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотный суглинок | 1,6–1,9 | 1,2–1,35 |
ІV | Тяжелая глина, сланцы, суглинок со щебнем, гравием, легкий скальный грунт | 1,9–2,0 | 1,35–1,5 |
Существуют также вычисления коэффициента остаточного разрыхления грунта, результат определяет, насколько почва поддается осадке при слеживании, при контакте с водой или утрамбовке. В строительстве эти расчеты имеют огромное значение для определения количества необходимого материала, а также их учитывают при складировании, утилизации земли.
Вся необходимая информация представлена далее в статье:
Наименование | Первоначальное увеличение объема после разработки, % | Остаточное разрыхление, % |
Глина ломовая | 28–32 | 6–9 |
Гравийно-галечные | 16–20 | 5–8 |
Растительный | 20–25 | 3–4 |
Лесс мягкий | 18–24 | 3–6 |
Лесс твердый | 24–30 | 4–7 |
Песок | 10–15 | 2–5 |
Скальные | 45–50 | 20–30 |
Солончак, солонец | ||
мягкий | 20–26 | 3–6 |
твердый | 28–32 | 5–9 |
Суглинок | ||
легкий, лессовидный | 18–24 | 3–6 |
тяжелый | 24-30 | 5-8 |
Супесь | 12-17 | 3-5 |
Торф | 24-30 | 8-10 |
Чернозем, каштановый | 22-28 | 5-7 |
КР по СНИП.
Коэффициент разрыхления грунта по СНИП:
- КР рыхлой супеси, влажного песка или суглинка при плотности 1.5 составляет 1,15 (категория первая).
- КР сухого неуплотненного песка при плотности 1,4 составляет 1,11 (категория первая).
- КР легкой глины или очень мелкого гравия при плотности 1,75 составляет 1,25 (третья вторая).
- КР плотного суглинка или обычной глины при плотности 1,7 составляет 1,25 (категория третья).
- КР сланцев или тяжелой глины при плотности 1,9 составляет 1,35. Плотность оставляем по умолчанию, т/м3.
Рассчитываем самостоятельно.
Допустим, вы хотите разработать участок. Задача — узнать какой объем грунта получится после проведенных подготовительных работ.
Известны следующие данные:
- ширина котлована — 1,1 м;
- вид почвы — влажный песок;
- глубина котлована — 1,4 м.
Вычисляем объем котлована (Xk):
Xk = 41*1,1*1,4 = 64 м3.
Теперь смотрим первоначальное разрыхление (по влажному песку) по таблице и считаем объем, который получим уже после работ:
Xr = 64*1,2 = 77 м3.
Таким образом, 77 кубов — это тот объем пласта, который подлежит вывозу по окончанию работ.
Для чего определяют разрыхления грунта?
Объемы почвы до разработки и после выемки существенно различаются. Именно расчеты позволяют подрядчику понять, какое количество грунта придется вывезти. Для составления сметы этой части работ учитываются: плотность почвы, уровень ее влажности и разрыхление.
В строительстве виды почвы условно делят на два основные вида:
- сцементированный;
- несцементированный.
Первый вид — называют скальным. Это преимущественно горные породы (магматические, осадочные и т.д.). Они водоустойчивы, с высокой плотностью. Для их разработки (разделения) применяют специальные технологии взрыва.
Второй вид — породы несцементированные. Они отличаются дисперсностью, проще обрабатываются. Их плотность гораздо ниже, поэтому разработку можно вести ручным способом, с применением специальной техники (бульдозеров, экскаваторов). К несцементированному виду относят пески, суглинки, глину, чернозем, смешанные грунтовые смеси.
что это такое, таблица первоначального и остаточного на основании СНиП, порядок расчета и пример
Любое строительство начинается с разработки котлована под возведение фундамента. Прочное основание жилого дома является залогом его долговечности.
На это влияет множество факторов: качество используемых стройматериалов, грамотное проектирование, анализ геологических проб почвы на близость протекания грунтовых вод и прочее.
А при определении конструкции фундамента и глубины его залегания необходимо брать во внимание разновидность и свойства грунта.
Поэтому мало нанести разметку, надо еще знать особенности грунта. Базовой его характеристикой выступает коэффициент разрыхления. Он позволяет установить увеличение объема земли при извлечении из котлована. От этого будет зависеть стоимость земляных работ.
Какие есть типы почвы с точки зрения строительства?
Если подразделять грунт с точки зрения строительства, то он бывает следующих типов:
- Сцементированный (скальный) – камнеобразные горные породы, которые поддаются разработке только путем взрыва (по специальной технологии) либо дробления. Это обусловлено их повышенной плотностью и водостойкостью.
- Несцементированный – отличается меньшей дисперсностью и проще поддается обработке. Поэтому разработка может вестись с привлечением спецтехники (бульдозеров, экскаваторов) или вручную. К подобной категории грунта относятся чернозем, песок, суглинки, смешанные почвосмеси.
Грунты скального происхождения – это горные породы высокой плотности, выпучивающиеся на поверхность либо покрытые небольшим слоем почвы. К таким относят: гранит, известь, песчаник, доломит, базальт.
Благодаря высоким прочностным показателям, они устойчивы к негативным внешним факторам:
- температурным скачкам,
- воздействию влаги.
По сравнению с другими видами грунта, данный тип самый надежный в плане строительства оснований.
Только скальный грунт в нашей стране редко встречается. К тому же, он имеет определенные минусы, которые создают много проблем при устройстве подвальных помещений и цокольных этажей.
Крупнообломочный грунт – это результат раскола скальных пород. Он не подвержен сжатию, равномерно оседает и не пучнится. Благодаря своим природным свойствам он идеально подходит для оснований. Но рекомендуется поверх него укладывать песчаник и глину.
Стоит отметить еще один вид грунта – песчаный. Он включает жесткие частицы в виде зерен.
В зависимости от их величины, песок бывает:
- гравелистый;
- крупный;
- средний;
- мелкий;
- пылеобразный.
От крупности частиц зависит уровень проседания песка, следовательно, и фундамента. Крупнозернистый песок лучше всего. Он меньше подвергается уплотнению и не размывается водой, а также практически не подвержен вспучиванию.
Наиболее опасными считаются пылеобразные песчаники с гравийным включением. Их еще называют «плывунами», потому что они сильно подвижны и для основания мало подходят.
Глинистая почвосмесь состоит из мельчайших чешуйчатых частиц, за счет чего они крепко сцепляются между собой. Промежуточным видом грунта (между песком и глиной) считается супесчаник. В нем содержится до 10% глинистых частиц и до 30% суглинок. Свойства такой почвы зависят от места добычи, состава и влажности. Чем больше она насыщена влагой, тем выше текучесть.
Органогенные разновидности:
- растительная прослойка;
- органический ил;
- грунт с болот и торфяники.
Подобный вариант мало пригоден для возведения фундамента. Это потому, что в таком грунте имеются соли, которые разрушают строительный материал.
Свойства, влияющие на сложность работ по копке ямы
Сложность проведения работ по разработке котлована зависит от определенных свойств грунта:
- Влажность – пропорции масс воды, содержащейся в почве, и твердых включений. Выводится в процентном соотношении: меньше 5% — грунт сухой, свыше 30% — влажный, 5-30% — нормальный. Чем мокрее земля, тем труднее ее вынимать. Исключением из правил будет глина – ее проблематичней извлекать в сухом виде.
- Разрыхляемость – свойство грунта увеличиваться в объеме в процессе выемки и разработки.
- Плотность – масса одного кубометра в обычном состоянии. Наиболее плотный и тяжелый грунт – это скальный, легкий – песчаники и супеси.
- Сцепление – степень противодействия сдвигу. Супесчаный и песчаный грунт имеет показатель от 3 до 50 кПа, суглинки – от 5 до 200 кПа. Отсюда следует, что первый вид легче поддается разработке.
Что обозначает понятие коэффициент разрыхления?
С коэффициентом разрыхления грунта приходится иметь дело не только проектировщикам, но и строителям в ходе работы. Данную характеристику используют для сравнения действительной плотности почвы на стройплощадке с номинальной.
Разумеется, для учета надежнее было бы применить взвешивание материала, но это часто невозможно осуществить по ряду причин. Тогда приходится прибегать к объемному учету, где не требуется специальное оборудование.
Такой способ позволяет выявить разницу между количеством грунта добытого в карьере, имеющегося на складе и используемого на строительной площадке.
Поскольку объемы земли до и после извлечения различаются, то расчеты с участием коэф. придется перевозить грунта.
Коэффициент первоначального разрыхления (Кp) – это значение, обозначающее увеличение количества почвосмеси в результате разработки и складирования в насыпях, по сравнению с ее изначальным состоянием в уплотненном виде.
Характеристики почв представлены в таблице:
Из таблицы видно, что коэффициент первоначального рыхления напрямую зависит от плотности. Так что, чем тяжелее грунт в естественном состоянии, тем больше он займет места после выборки. Данный показатель учитывается при вывозке извлеченной земли.
Также существует коэф. остаточного разрыхления (Кop) – показатель степени усадки грунта, уложенного в насыпь, под воздействием определенных факторов:
- слеживания,
- контакта с влагой,
- утрамбовки механизмами.
Данное значение учитывают при определении количества необходимого материала, который требуется доставить на стройплощадку, а также при ссыпании для хранения и уничтожения земли.
Чтобы подсчитать стоимость земляных работ, необходимо сделать соответствующие подсчеты. Зная размер планируемого котлована, высчитывают объем грунта. Его перемножают на коэффициент первоначального рыхления.
Полученное значение и будет фактически подвергнуто разработке с помощью спецтехники и потом вывезено со строительного объекта. Полученную цифру и надо умножить на стоимость разработки, погрузки и транспортировки для 1 м3 грунта.
Коэффициенты разрыхления до и после разработки грунта различны. Они приведены в таблице в процентах:
Таблица первоначального на основании СНиП
Согласно строительным нормам СНИП, коэффициент рыхления грунтовой спеси (первоначальный) и значение плотности по соответствующим категориям, будут следующими:
Категория | Наименование | Плотность, тонн /м3 | Коэффициент разрыхления |
І | Влажный песок, супесчаник, суглинки | 1,5–1,7 | 1,1–1,25 |
І | Рыхлый сухой песок | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, гравий средне- и мелкодисперсный, сухая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотная суглинистая почва | 1,6–1,9 | 1,2–1,35 |
ІV | Влажная глина, сланцы, смесь суглинка с щебенкой и гравием, скальные породы | 1,9–2,0 | 1,35–1,5 |
Таблица остаточного на основании СНиП
Коэффициенты остаточного разрыхления по СНИП для разного типа грунта, приведены в таблице:
Разновидность грунта | Изначальное превышение объема грунта после разработки, % | Остаточное рыхление, % |
Ломовая глина | 28-32 | От 6 до 9 |
Гравий+галька | 16-20 | От 5 до 8 |
Растительного происхождения | 20-25 | От 3 до 4 |
Мягкий лесс | 18-24 | От 3 до 6 |
Плотный лесс | 24-30 | От 4 до 7 |
Песчаник | 10-15 | От 2 до 5 |
Скальные породы | Около 50 | От 20 до 30 |
Солончак (солонец) мягкий/твердый | 20-26/28-32 | От 3 до 6/от 5 до 9 |
Суглинок легкий/тяжелый | 18-24/24-30 | От 3 до 6/от 5 до 8 |
Супесчаная почвосмесь | 12-17 | От 3 до 5 |
Торфяник | 24-30 | От 8 до 10 |
Чернозем | 21-27 | От 5 до 7 |
Пример расчета
Если отталкиваться от школьного курса геометрии, то для подсчета количества рейсов грузового автомобиля, вывозимого извлеченный грунт, достаточно трех действий:
- рассчитать объем земли;
- рассчитать объем кузова самосвал;
- поделить первую величину на вторую.
Отсюда станет ясно, сколько по финансам придется потратиться на перевозку.
К примеру, проектируется дом с площадью основания 7х9 метров и двухметровой глубиной фундамента, с учетом настеленного пола и обустроенного подвала.
Тогда достаточно перемножить данные показатели, чтобы вывести количество почвы: 7х9х2 = 126 м3. Средний объем кузова машины составляет 12-13 м3. Исходя из этого определяется число рейсов: 126:12 = около 10.
Такие расчеты ошибочны, поскольку в реальности объем транспортируемого грунта явно отличен от расчетного. Это объясняется тем, что ему свойственно разрыхляться. За счет этого изначальный объем увеличивается. Вот для чего существует коэффициент разрыхления, которые учитывает подобные изменения.
Предположим, что требуется разработать определенный участок земли, отведенный под строительство какого-либо объекта. Стоит задача – выяснить, какой будет объем земли после завершения подготовительных мероприятий.
Известны следующие параметры:
- ширина ямы под фундамент – 1 метр;
- длина фундамента – 45 метров;
- углубление котлована – 1,5 метра;
- толщина подушки из гравия после уплотнения – 0,3 метра;
- тип почвы – влажный песчаник.
Принцип расчета будет следующим:
Сначала определяют объем котлована (Vк): Vк = 45х1х1,5 = 67,5 м3.
- Теперь смотрят средний показатель первоначального разрыхления по влажному песку (в таблице). Он равен 1,2. Формула, по которой высчитывается количество грунта после его извлечения: V1 = 1,2х67,5 = 81 м3. Отсюда следует, что вывезти нужно 81 м3 выкопанной земли.
- Потом выясняют конечный объем земляного пласта после трамбовки под подушку по формуле: Vп = 45х1х0,3 = 13,5 м3.
- По таблице смотрят максимальный начальный и остаточный коэффициент рыхления гравия и гальки, переводят их в доли. Так, первый коэффициент kр = 20% или 1,2, а второй kор = 8% или 1,08. Считают объем гравия, который потребуется для укладки основания: V2 = Vп х kр/kор = 13,5х1,2/1,8 = 15 м3. Значит, понадобится для отсыпки такое количество гравия.
Подобный расчет приблизительный, но дает ориентировочное представление о том, что такое коэффициент разрыхления и для чего он нужен в строительстве. При составлении проекта возведения жилого строения задействуется более усложненная методика. А при строительстве небольшого объекта (например, гаража), подобная схема подойдет.
Заключение
Из всего изложенного материала ясно, что при разработке котлована под фундамент возводимого здания извлекаемый грунт меняется в объеме за счет формирования пустоты между кусками. Под этим подразумевается увеличение количества земли по отношению к той, что была вначале.
Такое явление характеризуется первичным коэффициентом разрыхления. Его значение варьируется в зависимости от типа грунта. А после укладки почвы в отвалы и после принудительной утрамбовки она вновь становится плотнее. Здесь уже имеет место остаточный коэффициент разрыхления.
Эти значения нужны для составления строительной сметы при подсчете земляных работ. А именно, во сколько обойдется аренда грузового автотранспорта и спецтехники. Если предварительная смета будет неверной, встанет необходимость в сверхурочном задействовании ТС, что обойдется дороже, поскольку услуга будет считаться сверхурочной.
Вконтакте
Одноклассники
Мой мир
и его расчет при проектировании дома
Строительные работы начинаются с разметки участка и разработки грунта под фундамент. Земляные работы занимают также первую строчку в строительной смете, и немалая сумма приходится на оплату техники, производящей выемку и вывоз грунта с участка. Для составления сметы и оценки стоимости работ мало знать габариты котлована, необходимо также учитывать особенности грунта. Одной из таких характеристик является коэффициент разрыхления грунта, позволяющий определить увеличение объема при выемке его из котлована
Коэффициент разрыхления грунта
Все грунты с точки зрения строительства можно разделить на две группы:
- Сцементированные, или скальные – каменные горные породы, разработка которых возможна только с применением технологий взрыва или дробления;
- Несцементированные, выборка которых проводится вручную или с помощью экскаваторов, бульдозеров, другой спецтехники. К ним относятся пески, глины, смешанные типы грунтов.
На сложность разработки и стоимость земляных работ влияют следующие свойства грунтов:
- Влажность – отношение массы воды, содержащейся в грунте, к массе твердых частиц;
- Сцепление – сопротивление сдвигу;
- Плотность, то есть масса одного кубического метра грунта в естественном состоянии;
- Разрыхляемость – способность увеличиваться в объеме при выемке и разработке.
Влажность грунт – это мера его насыщения водой, выраженная в процентах. Нормальная влажность лежит в пределах 5-25%,а грунты, имеющие влажность более 30%, считаются мокрыми. При влажности до 5% грунты принято называть сухими.
Образец влажного грунта
Сцепление влияет на сопротивление грунта сдвигу, у песков и супесей этот показатель лежит в диапазоне 3-50 кПа, у глин и суглинков – в пределах 5-200 кПа.
Плотность зависит от качественного и количественного состава грунта, а также от его влажности. Самыми плотными, и, соответственно, тяжелыми являются скальные грунты, наиболее легкие категории грунта – пески и супеси. Характеристики грунтов приведены в таблице:
Таблица – различные категории грунта
Как видно из таблицы, коэффициент первоначального разрыхления грунта прямо пропорционален плотности грунта, иными словами, чем плотнее и тяжелее грунт в естественных условиях, тем больше объема он займет в выбранном состоянии. Этот параметр влияет на объемы вывозки грунта после его разработки.
Существует также такой показатель, как остаточное разрыхление грунта, он показывает, насколько грунт поддается осадке в процессе слеживания, при контакте с водой, при трамбовке механизмами. Для частного строительства этот показатель имеет значение при заказе гравия для выполнения подушки под фундамент и других работ, связанных с расчетом привозного грунта. Также он важен для складирования и утилизации грунтов.
Таблица – наименование грунта и его остаточное разрыхление %
Пример расчета коэффициента разрыхления грунта
Применение коэффициентов первоначального и остаточного разрыхления грунтов на практике можно рассмотреть на примере расчета. Предположим, что есть необходимость выполнить разработку грунта под котлован заглубленного ленточного фундамента с последующей отсыпкой гравийной подушки. Грунт на участке – влажный песок. Ширина котлована – 1 метр, общая длина ленты фундамента 40 метров, глубина котлована – 1,5 метров, толщина гравийной подушки после трамбовки – 0,3 метра.
- Находим объем котлована, а, следовательно, и грунта в естественном состоянии:
Vк = 40 · 1 · 1,5 = 60 м3.
- Применяя коэффициент первоначального разрыхления грунта, определяем его объем после разработки:
V1 = kр · Vк = 1,2 · 60 = 72 м3;
где kр= 1,2 – коэффициент первоначального разрыхления грунта для влажного песка, принятый по среднему значению (таблица 1).
Следовательно, объем вывоза грунта составит 72м3.
- Находим конечный объем гравийной подушки после трамбовки:
Vп = 40 · 1 · 0,3 = 12 м3.
- Находим по таблице 2 максимальные значения первоначального и остаточного коэффициента разрыхления для гравийных и галечных грунтов и выражаем их в долях.
Первоначальный коэффициент разрыхления kр = 20% или 1,2; остаточный коэффициент разрыхления kор = 8% или 1,08.
- Вычисляем объем гравия для выполнения гравийной подушки конечным объемом 12 м3.
V2 = Vп ·kр/kор=12 · 1,2/1,08 = 13,33 м3.
Следовательно, объем необходимого для отсыпки гравия составит 13,3м3.
Конечно, такой расчет является весьма приблизительным, но он даст вам представление о том, что такое коэффициент разрыхления грунта, и для чего он используется. При проектировании коттеджа или жилого дома применяется более сложная методика, но для предварительного расчета стройматериалов и трудозатрат на строительство гаража или дачного домика вы можете ее использовать.
Коэффициент разрыхления грунтов – что это и как его рассчитать
Коэффициент первоначального разрыхления грунтов, а также показатели плотности приведены по категориям в таблице.
Наименование грунта | Категория грунта | Плотность грунта тонн/м3 | Коэффициент разрыхления грунта |
Песок рыхлый, сухой | I | 1,2…1,6 | 1,05…1,15 |
Песок влажный, супесь, суглинок разрыхленный | I | 1,4…1,7 | 1,1…1,25 |
Суглинок, средний и мелкий гравий, легкая глина | II | 1,5…1,8 | 1,2.-1,27 |
Глина, плотный суглинок | III | 1,6…1,9 | 1.2…1.35 |
Тяжелая глина, сланцы, суглинок с щебнем, гравием, легкий скальный грунт | IV | 1,9…2,0 | 1,35…1,5 |
К основным свойствам грунтов, влияющим на технологию и трудоемкость их разработки, относятся плотность, влажность, разрыхляемость.
Основными свойствами грунтов, влияющими на трудоёмкость их разработки и технологии, являются влажность, разрыхляемость и плотность.
Влажность грунта – это степень насыщения его водой. Её определяют как отношение массы воды в самом грунте к массе его твёрдых частиц. Выражается влажность в процентах. При влажности менее 5% грунты считаются сухими, при более чем 30% — мокрыми. Трудоёмкость разработки грунта повышается с увеличением его влажности. Но исключением является только глина: сухую её разрабатывать сложнее. Но при порядочной влажности глинистые грунты обретают липкость, что значительно усложняет их разработку.
Плотность – это масса одного кубического метра грунта в плотном теле (естественном состоянии). Несцементированные грунты обладают плотностью от 1,2 до 2,1 тонн/м3, скальные – до 3,3 тонн/м3.
Цены на разработку грунта за 1м3 механизированным способом
Оставьте заявку
При разработке грунт разрыхляется, увеличиваясь при этом в объёме. Именно данное количество грунта и транспортируется самосвалами к месту утилизации или складирования. Это явление называется первоначальным разрыхлением грунта, при этом характеризуясь коэффициентом первоначального рыхления (Кр), представляющего собой отношение объёма уже разрыхленного грунта к его объёму в естественном состоянии.
В насыпи разрыхлённый грунт уплотняется воздействием массы вышележащих грунтов или с помощью механического уплотнения, смачивания дождём, движения транспорта и т. д. Только грунт не занимает объёма, занимавшего до разработки длительное время. Он сохраняет остаточное разрыхление, которое измеряется коэффициентом остаточного разрыхления (Кор).
Из вышеизложенного следует, что, рассчитывая общую стоимость выполнения работ, необходимо знать геометрические размеры будущего котлована. При этом коэффициент первоначального разрыхления нужно умножить на объём грунта в будущем карьере. Именно это количество грунта будет разработано и вывезено со строительного объекта для складирования или утилизации. И именно эта цифра умножается на цену разработки, погрузки и транспортировки одного кубического метра грунта.
Коэффициент однородности (Cu) и коэффициент кривизны (Cc) почвы
Коэффициент однородности (Cu), коэффициент кривизны (Cc) и эффективный размер (D10) являются характеристиками сортировки почвы. Это геометрические свойства кривой профилирования, описывающие определенный тип почвы.
Особенности и определение коэффициента однородности, коэффициента кривизны и эффективного размера описаны в данной статье.
Характеристики кривой уклона
Кривая гранулометрического состава анализируется с использованием различных размеров частиц: D60, D30 и D10.Кривая представляет собой график, построенный между процентным содержанием более мелких частиц по оси y и размером частиц по оси x в логарифмическом масштабе. Это построено на основе результатов ситового анализа, проведенного на образце почвы.
Также читайте: Ситовой анализ почвы


В На графике различные размеры частиц D10, D30 и D60 представлены как показано на рисунке 1 выше.
D10 называется эффективным размером частиц . Это означает, что 10% частиц мельче и 90% частиц крупнее, чем D10. Это размер на 10% мельче по весу.
Аналогично, D60 - это размер частиц, при котором 60% частиц являются более мелкими, а 40% - более мелкими. частицы крупнее, чем размер D60. D30 - это размер, при котором на 30% меньше вес и оставшиеся 70% частиц крупнее, чем размер D30. Следовательно, D10, D30 и D60 используются для определения мер градации.
Меры градации
коэффициент однородности (Cu) и коэффициент градации (Cc) являются меры градации почвы.Эти коэффициенты помогают классифицировать почву как хорошо или плохо оцененные.


Коэффициент однородности (Cu)
Коэффициент однородности (Cu) определяется как отношение D60 к D10. Значение Cu от 4 до 6 означает, что почва хорошо отсортирована. Когда Cu меньше 4, почва классифицируется как плохо или равномерно.
Равномерно сортированный грунт содержит одинаковые частицы со значением Cu примерно равным 1.Значение коэффициента однородности 2 или 3 определяет почву как плохо сортированную. Пляжный песок попадает в эту категорию.
Более высокое значение Cu указывает на то, что почвенная масса состоит из частиц почвы разного размера.
Коэффициент кривизны (Cc)
Коэффициент кривизны определяется по формуле:
Чтобы почва была хорошо оцененный, значение Cc должно находиться в диапазоне от 1 до 3.
Для любого размера масса почвы, значение Cu и Cc равно 1.
.Универсальное уравнение потерь почвы (USLE)
Универсальное уравнение потерь почвы (USLE)
Содержание
- Фон
- Универсальное уравнение потерь почвы (USLE)
- Процедура использования USLE
- Нормы допустимой потери почвы
- Стратегии управления по сокращению потерь почвы
- Уравнение для расчета LS (если не используется таблица 3А)
- Пример: расчет эрозии почвы с использованием USLE
Фон
Универсальное уравнение потерь почвы (USLE) предсказывает долгосрочное среднегодовая скорость эрозии на склоне поля в зависимости от количества осадков структура, тип почвы, топография, система посевов и методы управления.USLE только прогнозирует потери почвы в результате или ручейная эрозия на одном склоне и не учитывает дополнительных потери почвы, которые могут возникнуть в результате овражной, ветровой или почвенной эрозии. Эта модель эрозии была создана для использования в отдельных посевах и системы управления, но также применимо к несельскохозяйственным условия, такие как строительные площадки.USLE можно использовать для сравнить потери почвы с определенного поля с определенной культурой и система управления для «допустимой потери почвы». Альтернатива системы управления и растениеводства также могут быть оценены для определения адекватность природоохранных мер при планировании хозяйств.
Пять основных факторов используются для расчета потерь почвы на данный сайт. Каждый фактор - это числовая оценка конкретного состояние, которое влияет на степень эрозии почвы на конкретном место расположения.Значения эрозии, отраженные этими факторами, могут варьироваться. значительно из-за меняющихся погодных условий. Следовательно значения, полученные из USLE, более точно представляют долгосрочные средние.
Расчет потерь почвы с помощью USLE также может быть выполнен в программном обеспечении для управления питательными веществами OMAFRA NMAN, SOF001. Почва величина убытков, полученная из уравнения USLE, используется для определения «значение рейтинга эрозии почвы» при расчете фосфора Индекс.См. Информационный бюллетень OMAFRA . Индекс фосфора для поля, Заказ № 05-067.
Универсальное уравнение потерь почвы (USLE)
A = R x K x LS x C x P
A представляет потенциальную долгосрочную среднегодовую потерю почвы. в тоннах на гектар (тонны на акр) в год. Это сумма, что сравнивается с пределами «допустимой потери почвы».
R - это коэффициент осадков и стока по географическому положению, как приведено в таблице 1.Чем больше интенсивность и продолжительность ливня, тем выше вероятность эрозии. Выберите коэффициент R из таблицы 1 на основе на обозначении муниципалитета верхнего яруса и соответствующей погоде станцию, на которой будет производиться расчет.
К - коэффициент размываемости почвы (табл. 2). Это средняя потеря почвы в тоннах на гектар (тонны на акр) для конкретная почва в обрабатываемом, непрерывном пара с произвольно Выбрана длина откоса 22.13 м (72,6 фута) и крутизна склона 9%. K - мера восприимчивости частиц почвы к отсоединению и транспортировке дождями и стоками. Текстура главный фактор, влияющий на K, но структура, органическое вещество и проницаемость также вносят свой вклад.
LS - коэффициент градиента длины откоса. Коэффициент LS представляет отношение потерь почвы в данных условиях к потерям на участке при «стандартной» крутизне откоса 9% и длине откоса 22.13 м (72,6 футов). Чем круче и длиннее спуск, тем выше риск эрозии. Используйте либо Таблицу 3A, либо "Уравнение для расчета LS", включенное в этот информационный бюллетень, чтобы получить LS.
C - фактор урожая / растительности и управления. Он используется для определить относительную эффективность управления почвой и урожаем системы с точки зрения предотвращения потери почвы. Фактор C - это отношение сравнение потерь почвы с земли под конкретную культуру и управление системы к соответствующему ущербу от непрерывного пара и пашня.Коэффициент C можно определить, выбрав культуру. тип и способ обработки почвы (Таблица 4A и Таблица 4Б соответственно), что соответствует полю, а затем умножая эти факторы вместе.
Коэффициент C, полученный в результате этого расчета, является обобщенным Значение C-фактора для конкретной культуры, которое не учитывает урожай севообороты или климат и годовое распределение осадков для разные аграрные районы страны.Это обобщенное Фактор C, однако, дает относительные числа для различных системы земледелия и обработки почвы, помогая вам взвесить достоинства каждой системы.
P - фактор практики поддержки. Он отражает эффекты методы, которые уменьшат количество и скорость стока воды и таким образом уменьшить количество эрозии. Фактор P представляет отношение потерь почвы на опоре к прямолинейной сельское хозяйство вверх и вниз по склону.Наиболее часто используемые опоры пахотные земли - поперечная обработка откосов, контурное земледелие и полосовая обрезка (Таблица 5).
Процедура использования USLE
- По текстуре почвы определите значение K (таблица 2). Если на поле более одного типа почвы и текстуры почвы не сильно отличаются, используйте тот тип почвы, который представляет большую часть поля.Повторите для другой почвы типы по мере необходимости.
- Разделите поле на участки с равномерным уклоном и длина. Присвойте значение LS каждому разделу (Таблица 3А).
-
Выберите коэффициент типа культуры и коэффициент метода обработки почвы для урожай, который нужно выращивать. Умножьте эти два фактора вместе, чтобы получить фактор C.
- Выберите P-фактор в зависимости от используемой практики поддержки (Таблица 5).
-
Умножьте 5 коэффициентов, чтобы получить потерю почвы на гектар (акр).
Метеостанция | Обозначение муниципалитета верхнего уровня | Коэффициент R |
---|---|---|
Брантфорд | Графство Брант | 90 |
Дели | 100 | |
Эссекс | Графство Эссекс | 110 |
Фергус | Графства Дафферин и Веллингтон | 120 |
Глен Аллен | 130 | |
Гвельф | 100 | |
Гамильтон | Город Гамильтон; Региональный муниципалитет Халтон | 100 |
Кингстон | Город графства Принц Эдуард; Графства Фронтенак и Леннокс и Аддингтон | 90 |
Китченер | Региональный муниципалитет Ватерлоо | 110 |
Лондон | Графства Лэмбтон, Мидлсекс и Оксфорд | 100 |
Маунт-Форест | графства Брюс, Грей, Халибертон и Симко; Район Мускока | 90 |
Ниагара | Региональный муниципалитет Ниагары | 90 |
Северный Онтарио | Районы Алгома, Кокран, Кенора, остров Манитулин, Пэрри-Саунд, Рейни-Ривер, Садбери, Тандер-Бей и Тимискаминг | 90 |
Оттава | Город Оттава; Графства Ланарк и Ренфрю; Соединенные Графства Лидс и Гренвилл, Прескотт и Рассел и Стормонт, Дандас и Гленгарри; Район Ниписсинг | 90 |
Проспект Хилл | Графства Гурон и Перт | 120 |
Ridgetown | Муниципалитет Чатем-Кент | 110 |
Simcoe | Графства Халдиманд и Норфолк | 120 |
ул.Екатерины | 100 | |
Сент-Томас | Графство Элгин | 90 |
Торонто | Город Торонто, региональные муниципалитеты Пил и Йорк | 90 |
Твид | Город Каварта Лейкс; Графства Гастингс, Нортумберленд, и Питерборо; Региональный муниципалитет Дарема | 90 |
Виндзор | 110 |
Текстурный класс | Коэффициент К тонн / га (тонн / акр) | ||
---|---|---|---|
Среднее значение OMC * | менее 2% OMC | Более 2% OMC | |
Глина | 0,49 (0,22) | 0.54 (0,24) | 0,47 (0,21) |
Суглинок | 0,67 (0,30) | 0,74 (0,33) | 0,63 (0,28) |
Суглинок крупный | 0,16 (0,07) | – | 0,16 (0,07) |
Мелкий песок | 0.18 (0,08) | 0,20 (0,09) | 0,13 (0,06) |
Суглинок мелкий | 0,40 (0,18) | 0,49 (0,22) | 0,38 (0,17) |
Глина тяжелая | 0,38 (0,17) | 0,43 (0,19) | 0.34 (0,15) |
Суглинок | 0,67 (0,30) | 0,76 (0,34) | 0,58 (0,26) |
Песок мелкий суглинистый | 0,25 (0,11) | 0,34 (0,15) | 0,20 (0,09) |
Суглинистый песок | 0.09 (0,04) | 0,11 (0,05) | 0,09 (0,04) |
Песок мелкозернистый супесчаный | 0,87 (0,39) | 0,99 (0,44) | 0,56 (0,25) |
Песок | 0,04 (0,02) | 0,07 (0,03) | 0.02 (0,01) |
Суглинок супесчаный | 0,45 (0,20) | – | 0,45 (0,20) |
Суглинок | 0,29 (0,13) | 0,31 (0,14) | 0,27 (0,12) |
Илистый суглинок | 0.85 (0,38) | 0,92 (0,41) | 0,83 (0,37) |
Глина илистая | 0,58 (0,26) | 0,61 (0,27) | 0,58 (0,26) |
Суглинок илистый | 0,72 (0,32) | 0,79 (0,35) | 0.67 (0,30) |
Очень мелкий песок | 0,96 (0,43) | 1,03 (0,46) | 0,83 (0,37) |
Супеси очень мелкие | 0,79 (0,35) | 0,92 (0,41) | 0,74 (0,33) |
* Содержание органических веществ
Нормы допустимой потери почвы
Допустимая потеря почвы - это максимальное годовое количество почвы, которое может быть удален до долгосрочной естественной продуктивности почвы отрицательно влияет.
Воздействие эрозии на данный тип почвы и, следовательно, допуск уровень варьируется в зависимости от типа и глубины почвы. В общем-то, почвы с глубоким однородным верхним слоем почвы без камней и / или Предполагается, что ранее не подвергшиеся эрозии имеют более высокую толерантность предел, чем почвы, которые являются мелкими или ранее эродированными.
Нормы допустимых потерь в почве приведены в таблице. 6.
Рекомендуемый уровень допуска для большинства почв Онтарио - 6,7 тонн / га / год (3 тонны / акр / год) или меньше.
Стратегии управления по снижению потерь почвы
Получив оценку потенциальной годовой потери почвы для поля, вы можете рассмотреть способы уменьшить эту потерю до приемлемого уровня. Таблица 7 описывает управление стратегии, которые помогут вам уменьшить эрозию почвы.
Длина откоса: м (фут) | Наклон (%) | Коэффициент LS |
---|---|---|
30,5 (100) | 10 | 1,38 |
8 | 1,00 | |
6 | 0.67 | |
5 | 0,54 | |
4 | 0,40 | |
3 | 0,30 | |
2 | 0,20 | |
1 | 0,13 | |
0 | 0.07 | |
61 (200) | 10 | 1,95 |
8 | 1,41 | |
6 | 0,95 | |
5 | 0,76 | |
4 | 0.53 | |
3 | 0,39 | |
2 | 0,25 | |
1 | 0,16 | |
0 | 0,08 | |
122 (400) | 10 | 2.76 |
8 | 1,99 | |
6 | 1,35 | |
5 | 1,07 | |
4 | 0,70 | |
3 | 0,52 | |
2 | 0.30 | |
1 | 0,20 | |
0 | 0,09 | |
244 (800) | 10 | 3,90 |
8 | 2,82 | |
6 | 1.91 | |
5 | 1,52 | |
4 | 0,92 | |
3 | 0,68 | |
2 | 0,37 | |
1 | 0,24 | |
0 | 0.11 | |
488 (1,600) | 10 | 5,52 |
8 | 3,99 | |
6 | 2,70 | |
5 | 2,15 | |
4 | 1.21 | |
3 | 0,90 | |
2 | 0,46 | |
1 | 0,30 | |
0 | 0,12 | |
975 (3 200) | 10 | 7.81 |
8 | 5,64 | |
6 | 3,81 | |
5 | 3,03 | |
4 | 1,60 | |
3 | 1,19 | |
2 | 0.57 | |
1 | 0,36 | |
0 | 0,14 |
Уравнение для расчета LS (если не используется Таблица 3A)
LS = [0,065 + 0,0456 (наклон) + 0,006541 (наклон) 2 ] (наклон длина ÷ постоянная) NN
Где:
slope = крутизна склона в%
длина откоса = длина откоса в м (футах)
константа = 22.1 метрическая система (72,5 дюйма)
NN = см. Таблицу 3B ниже
S | <1 | 1 ≤ Наклон <3 | 3 ≤ Наклон <5 | ≥ 5 |
---|---|---|---|---|
NN | 0.2 | 0,3 | 0,4 | 0,5 |
Тип культуры | Фактор |
---|---|
Зерно кукурузы | 0.40 |
Силос кукуруза, фасоль и рапс | 0,50 |
Зерновые (яровые и зимние) | 0,35 |
Сезонные садовые культуры | 0,50 |
Фруктовые деревья | 0,10 |
Сено и пастбище | 0.02 |
Способ обработки почвы | Фактор |
---|---|
Осенний плуг | 1,0 |
Плуг пружинный | 0,90 |
Мульчирование | 0.60 |
Конечная обработка почвы | 0,35 |
Зона обработки почвы | 0,25 |
Нет до | 0,25 |
Служба поддержки | Коэффициент P |
---|---|
Вверх и вниз | 1.0 |
Поперечный уклон | 0,75 |
Контурное земледелие | 0,50 |
Обрезка полосы, поперечный уклон | 0,37 |
Обрезка полосы, контур | 0,25 |
Класс эрозии почвы | Потенциальный почвенный лосстон / га / год (тонн / акр / год) |
---|---|
Очень низкое (терпимое) | <6,7 (3) |
Низкий | 6,7 (3) –11,2 (5) |
Умеренный | 11.2 (5) –22,4 (10) |
Высокая | 22,4 (10) –33,6 (15) |
Тяжелая | > 33,6 (15) |
Фактор | Стратегии управления | Пример |
---|---|---|
R | Коэффициент R для поля не может быть изменен. | – |
К | Коэффициент К для поля нельзя изменить. | – |
LS | Можно построить террасы для уменьшения длины откоса. что приводит к снижению потерь почвы. | Террасирование требует дополнительных инвестиций и приведет к некоторые неудобства в хозяйстве.Изучите другие способы защиты почвы сначала практики. |
С | Выбор видов культур и методов обработки почвы минимально возможный C-фактор приведет к меньшей эрозии почвы. | Рассмотрите системы земледелия, которые обеспечат максимальную защиту для почвы. По возможности используйте минимальные системы обработки почвы. |
п. | Выбор практики поддержки с наименьшим возможный фактор, связанный с этим, приведет к снижению уровня почвы убытки. | Используйте вспомогательные методы, такие как сельское хозяйство на поперечных склонах, вызовет отложение осадка вблизи источника. |
Пример: расчет эрозии почвы с использованием USLE
A = R x K x LS x C x P
Коэффициент осадков и стока (R)
Поле выборки находится в округе Мидлсекс.Следовательно, фактор R получено в таблице 1 из лондонской погоды станция.
Коэффициент R = 100
Фактор эродируемости почвы (K)
Пробное поле состоит из мелкосуглинистой почвы со средним содержание органических веществ. Коэффициент K получается из таблицы 2.
Коэффициент К = 0,40
Коэффициент градиента длины уклона (LS)
Длина пробного поля 244 м (800 футов) с уклоном 6%.В Коэффициент LS можно получить непосредственно из Таблицы 3A. или может быть рассчитано с помощью уравнения на стр. 4. Значение NN из таблицы 3B, которая будет использоваться в уравнении, является 0,5.
Коэффициент LS = 1,91
Фактор урожая / растительности и управления (C)
Пробное поле было вспахано весной и зерновая кукуруза была посадили. Фактор C получается из фактора типа культуры (Таблица 4A) и коэффициент метода обработки почвы (Таблица 4B).
Коэффициент типа культуры для кукурузы на зерно = 0,4
Коэффициент метода обработки почвы для рессорного плуга = 0,9
Коэффициент C = 0,4 x 0,9 = 0,36
Практический фактор поддержки (P)
На этом пробном поле используется поперечное земледелие. Фактор P было получено из Таблицы 5.
Коэффициент P = 0,75
Следовательно,
A = R x K x LS x C x P
= 100 х 0.40 х 1,91 х 0,36 х 0,75
= 20,63 т / га / год (9,28 т / акр / год)
Ссылаясь на Таблицу 6 настоящего Информационного бюллетеня, вы увидим, что этот коэффициент потери почвы 20,63 тонны / га / год (9,28 т / акр / год) находится в умеренном диапазоне и значительно выше «допустимого уровня потерь» 6,7 т / га / год (3 тонны / акр / год). Для уменьшения потерь почвы для этого образца поле ниже 6.7 тонн / га / год (3 тонны / акр / год) мы будем внесите следующие изменения в приведенный выше пример.
Изменить способ обработки почвы с «пружинный плуг (0,9)» на «нулевую обработку почвы (0,25)»
Следовательно, коэффициент C (пересмотренный) = 0,4 x 0,25 = 0,10
Скорректированное значение годовой потери почвы составляет
A = R x K x LS x C x P
= 100 х 0,40 х 1,91 х 0,10 х 0,75
= 5.73 тонны / га / год (2,58 тонны / акр / год)
Таким образом, изменив практику обработки почвы, среднегодовая прогнозируемая потеря почвы для этого поля ниже «допустимой потери почвы» 6,7 т / га / год (3 т / акр / год).
Дополнительные исследования, эксперименты и данные привели к разработке Пересмотренного Универсального уравнения потерь почвы (RUSLE), которое компьютеризированная версия USLE.RUSLE имеет ту же формулу, что и USLE, с улучшением многих факторных оценок. РУСЛЕ может обрабатывать более сложные комбинации методов обработки почвы и возделывания культур и большее разнообразие форм откосов. Дальнейшая улучшенная версия программного обеспечения, известного как RUSLE2, может делать прогноз эрозии на основе событий. РУСЛЕ2 требует исчерпывающий набор входной информации, которая может не быть доступным во всех юрисдикциях.
.ГЛАВА 2 - ПОЧВА И ВОДА
ГЛАВА 2 - ПОЧВА И ВОДА
2.1 Почва
2.2 Поступление воды в почву
2.3 Состояние влажности почвы
2.4 Доступная влажность
2.5 Уровень подземных вод
2.6 Эрозия почвы водой
2.1.1 Состав почвы
2.1.2 Профиль почвы
2.1.3 Текстура почвы
2.1.4 Структура почвы
2.1.1 Состав почвы
Когда сухая почва измельчается рукой, можно увидеть, что она состоит из всевозможных частиц разного размера.
Большинство этих частиц возникает в результате разложения горных пород; их называют минеральными частицами. Некоторые происходят из остатков растений или животных (гниющие листья, кусочки костей и т. Д.), Их называют органическими частицами (или органическими веществами). Кажется, что частицы почвы касаются друг друга, но на самом деле между ними есть промежутки.Эти пространства называются порами. Когда почва «сухая», поры в основном заполнены воздухом. После полива или дождя поры в основном заполняются водой. Живой материал находится в почве. Это могут быть живые корни, а также жуки, черви, личинки и т. Д. Они способствуют аэрации почвы и тем самым создают благоприятные условия для роста корней растений (рис. 26).
Рис. 26. Состав почвы
2.1.2 Профиль почвы
Если вырыть яму в почве глубиной не менее 1 м, можно увидеть разные слои, разные по цвету и составу.Эти слои называются горизонтами. Эта последовательность горизонтов называется профилем почвы (рис. 27).
Рис. 27. Профиль почвы
Очень общий и упрощенный профиль почвы можно описать следующим образом:
а. Пахотный слой (толщина от 20 до 30 см): богат органическими веществами и содержит много живых корней. Этот слой подлежит подготовке почвы (например, вспашка, боронование и т. Д.) И часто имеет темный цвет (от коричневого до черного).г. Глубокий пахотный слой: содержит гораздо меньше органических веществ и живых корней. Этот слой практически не подвержен нормальным подготовительным работам. Цвет более светлый, часто серый, а иногда пестрый с желтоватыми или красноватыми пятнами.
г. Подземный слой: почти нет органических веществ или живых корней. Этот слой не очень важен для роста растений, так как до него доходят лишь несколько корней.
г. Слой материнской породы: состоит из породы, в результате разложения которой образовалась почва.Эту породу иногда называют материнским материалом.
Глубина различных слоев сильно различается: некоторые слои могут вообще отсутствовать.
2.1.3 Текстура почвы
Минеральные частицы почвы сильно различаются по размеру и могут быть классифицированы следующим образом:
Название частиц | Пределы размеров в мм | Отличить невооруженным глазом |
гравий | больше 1 | очевидно |
песок | от 1 до 0.5 | легко |
ил | от 0,5 до 0,002 | еле |
глина | менее 0,002 | невозможно |
Количество песка, ила и глины, присутствующих в почве, определяет ее структуру.
На крупнозернистых почвах: преобладает песок (песчаные почвы).
В почвах средней толщины: преобладает ил (суглинистые почвы).
В мелкозернистых почвах: преобладает глина (глинистые почвы).
В поле текстуру почвы можно определить, потерев почву между пальцами (см. Рис. 28).
Фермеры часто говорят о легких и тяжелых почвах. Грунт с крупной текстурой является легким, потому что с ним легко работать, а с мелкозернистым грунтом - тяжелым, потому что с ним трудно работать.
Выражение, используемое фермером | Выражения, используемые в литературе | |
свет | песчаный | грубая |
средний | суглинистый | средний |
тяжелая | глинистый | штраф |
Текстура почвы постоянная, фермер не может ее модифицировать или изменять.
Рис. 28а. Грунт крупнозернистый. - песчаный. Отдельные частички рыхлые и разваливаются в руке даже во влажном состоянии.
Рис. 28б. Грунт средней текстуры на ощупь очень мягкий (как мука) в сухом состоянии. Его можно легко отжать во влажном состоянии, и он станет шелковистым.
Рис. 28c. Грунт с мелкой текстурой прилипает к пальцам во влажном состоянии и может образовывать шарик при нажатии.
2.1.4 Структура почвы
Структура почвы означает группировку частиц почвы (песок, ил, глина, органические вещества и удобрения) в пористые соединения. Это так называемые агрегаты. Структура почвы также относится к расположению этих агрегатов, разделенных порами и трещинами (рис. 29).
Основные типы агрегатов показаны на рис. 30: гранулированная, блочная, призматическая и массивная структура.
Рис. 29. Структура почвы
Когда она присутствует в верхнем слое почвы, массивная структура блокирует вход воды; прорастание семян затруднено из-за плохой аэрации.С другой стороны, если верхний слой почвы зернистый, вода легко проникает в него, и семена лучше прорастают.
В призматической конструкции движение воды в почве преимущественно вертикальное, поэтому подача воды к корням растений обычно недостаточна.
В отличие от текстуры, структура почвы непостоянна. С помощью методов обработки почвы (вспашка, рыхление и т. Д.) Фермер пытается получить зернистую структуру верхнего слоя почвы на своих полях.
Фиг.30. Примеры грунтовых сооружений .
ЗЕМЛЯННЫЙ | БЛОКИРОВКА |
|
|
| |
|
|
2.2.1 Инфильтрация процесс
2.2.2 Скорость проникновения
2.2.3 Факторы влияет на скорость инфильтрации
2.2.1 Процесс инфильтрации
Когда на поле подается дождевая или поливная вода, она просачивается в почву. Этот процесс называется инфильтрацией.
Инфильтрацию можно визуализировать, налив воды в слегка утрамбованный стакан с сухой измельченной почвой. Вода просачивается в почву; цвет почвы становится темнее по мере ее увлажнения (см.рис.31).
Рис. 31. Инфильтрация воды в почву
2.2.2 Скорость инфильтрации
Повторите предыдущий тест, на этот раз с двумя стаканами. Один заполнен сухим песком, а другой - сухой глиной (см. Рис. 32а и б).
Вода проникает в песок быстрее, чем в глину. Говорят, что песок имеет более высокую скорость инфильтрации.
Рис. 32а. В каждый стакан подается одинаковое количество воды
Рис.32b. Через час вода просочилась в песок, в то время как некоторое количество воды все еще остается на глине
Скорость инфильтрации почвы - это скорость, с которой вода может просачиваться в нее. Обычно измеряется глубиной (в мм) слоя воды, которую почва может поглотить за час.
Скорость инфильтрации 15 мм / час означает, что для просачивания слоя воды толщиной 15 мм на поверхности почвы потребуется один час (см. Рис. 33).
Фиг.33. Почва со скоростью инфильтрации 15 мм / час
Диапазон значений скорости инфильтрации приведен ниже:
Низкая скорость инфильтрации | менее 15 мм / час |
средняя скорость инфильтрации | от 15 до 50 мм / час |
высокая скорость инфильтрации | более 50 мм / час |
2.2.3 Факторы, влияющие на скорость инфильтрации
Скорость инфильтрации почвы зависит от постоянных факторов, таких как текстура почвы. Это также зависит от различных факторов, таких как влажность почвы.
и. Текстура почвыГрунты с крупнозернистой структурой состоят в основном из крупных частиц, между которыми имеются большие поры.
С другой стороны, мелкозернистые почвы в основном состоят из мелких частиц, между которыми имеются мелкие поры (см.рис.34).
Рис. 34. Интенсивность инфильтрации и текстура почвы
В грубых почвах дождевая или поливная вода попадает и перемещается в более крупные поры; для проникновения воды в почву требуется меньше времени. Другими словами, скорость инфильтрации выше для крупнозернистых почв, чем для мелкозернистых почв.
ii. Влажность почвы
Вода проникает быстрее (скорость инфильтрации выше), когда почва сухая, чем когда она влажная (см. Рис.35). Как следствие, когда поливная вода подается на поле, вода сначала легко проникает, но по мере того, как почва становится влажной, скорость инфильтрации снижается.
Рис. 35. Интенсивность инфильтрации и влажность почвы
iii. Структура почвы
Вообще говоря, вода проникает быстро (высокая скорость инфильтрации) в зернистые почвы, но очень медленно (низкая скорость инфильтрации) в массивные и плотные почвы.
Поскольку фермер может влиять на структуру почвы (посредством культурных практик), он также может изменять скорость инфильтрации своей почвы.
2.3.1 Влажность почвы
2.3.2 Насыщенность
2.3.3 Пропускная способность
2.3.4 Постоянная точка увядания
2.3.1 Влажность почвы
Содержание влаги в почве указывает количество воды, присутствующей в почве.
Обычно выражается как количество воды (в мм водной глубины), присутствующее на глубине одного метра почвы.Например: когда количество воды (в мм водной глубины) составляет 150 мм на глубине одного метра почвы, влажность почвы составляет 150 мм / м (см. Рис. 36).
Рис. 36. Влажность почвы 150 мм / м
Содержание влаги в почве также может быть выражено в объемных процентах. В приведенном выше примере 1 м 3 почвы (например, с глубиной 1 м и площадью поверхности 1 м 2 ) содержит 0,150 м 3 воды (например.грамм. глубиной 150 мм = 0,150 м и площадью поверхности 1 м 2 ). В результате содержание влаги в почве в объемных процентах составляет:
Таким образом, влажность 100 мм / м соответствует 10 объемным процентам.
Примечание: Количество воды, хранящейся в почве, не является постоянным во времени, но может меняться.
2.3.2 Насыщенность
Во время дождя или полива поры почвы заполняются водой.Если все поры почвы заполнены водой, почва считается насыщенной. В почве не осталось воздуха (см. Рис. 37а). В поле легко определить, насыщена ли почва. Если выжать горсть насыщенной почвы, немного (мутной) воды потечет между пальцев.
Растениям нужен воздух и вода в почве. При насыщении воздуха нет и растение пострадает. Многие культуры не выдерживают насыщенных почвенных условий в течение более 2-5 дней. Рис - одно из исключений из этого правила.Период насыщения верхнего слоя почвы обычно длится недолго. После прекращения дождя или орошения часть воды, находящейся в более крупных порах, уйдет вниз. Этот процесс называется дренированием или перколяцией.
Вода, стекающая из пор, заменяется воздухом. В крупнозернистых (песчаных) почвах дренаж завершается в течение нескольких часов. В мелкозернистых (глинистых) почвах дренаж может занять несколько (2-3) дней.
2.3.3 Вместимость поля
После прекращения дренажа большие поры почвы заполняются воздухом и водой, в то время как более мелкие поры все еще полны водой.На этом этапе считается, что почва полностью заполнена. При урожайности полей содержание воды и воздуха в почве считается идеальным для роста сельскохозяйственных культур (см. Рис. 37b).
2.3.4 Постоянная точка увядания
Постепенно вода, накопленная в почве, поглощается корнями растений или испаряется с верхнего слоя почвы в атмосферу. Если в почву не подается дополнительная вода, она постепенно высыхает.
Чем суше становится почва, тем плотнее удерживается оставшаяся вода и тем труднее корням растений извлекать ее.На определенном этапе потребления воды недостаточно для удовлетворения потребностей растения. Растение теряет свежесть и увядает; листья меняют цвет с зеленого на желтый. В конце концов растение умирает.
Содержание влаги в почве на стадии отмирания растения называется точкой постоянного увядания. В почве все еще содержится немного воды, но корням слишком трудно высосать ее из почвы (см. Рис. 37c).
Рис. 37. Некоторые характеристики влажности почвы
Почву можно сравнить с резервуаром для воды для растений.Когда почва насыщен, резервуар полон. Однако часть воды быстро стекает ниже корневую зону до того, как растение сможет ее использовать (см. рис. 38a).
Рис. 38а. Насыщенность
Когда эта вода стечет, почва полностью заполнена. Корни растений вытягивают воду из того, что остается в резервуаре (см. Рис. 38b).
Рис. 38b. Вместимость поля
Когда почва достигает точки постоянного увядания, оставшаяся вода перестает быть доступны для завода (см. рис.38c).
Рис. 38c. Постоянная точка увядания
Количество воды, фактически доступной растению, - это количество воды, хранящейся в почве при заполнении поля, за вычетом воды, которая останется в почве при постоянной точке увядания. Это показано на рис. 39.
Рис. 39. Доступная влажность или влажность почвы
Доступное содержание воды = содержание воды на уровне поля - содержание воды в точке постоянного увядания..... (13) |
Доступное содержание воды во многом зависит от текстуры и структуры почвы. Диапазон значений для различных типов почв приведен в следующей таблице.
Почва | Доступное содержание воды в мм глубины воды на м глубины почвы (мм / м) |
песок | от 25 до 100 |
суглинок | 100 до 175 |
глина | 175–250 |
Пропускная способность поля, постоянная точка увядания (PWP) и доступная влажность называются характеристиками влажности почвы.Они постоянны для данной почвы, но сильно различаются от одного типа почвы к другому.
2.5.1 Глубина Уровень подземных вод
2.5.2 Подземные воды таблица
2.5.3 Капиллярный подъем
Часть воды, нанесенной на поверхность почвы, дренируется ниже корневой зоны и питает более глубокие слои почвы, которые постоянно насыщаются; верхняя часть насыщенного слоя называется уровнем грунтовых вод или иногда просто уровнем грунтовых вод (см.рис.40).
Рис. 40. Уровень грунтовых вод
2.5.1 Глубина уровня грунтовых вод
Глубина залегания грунтовых вод сильно варьируется от места к месту, в основном из-за изменений топографии местности (см. Рис. 41).
Рис. 41. Изменения глубины уровня грунтовых вод
В одном конкретном месте или поле глубина уровня грунтовых вод может изменяться во времени.
После сильных дождей или орошения уровень грунтовых вод повышается.Он может даже проникнуть в корневую зону и пропитать ее. В случае продолжительного действия такая ситуация может иметь катастрофические последствия для сельскохозяйственных культур, которые не могут противостоять «мокрым ногам» в течение длительного периода. Если уровень грунтовых вод выходит на поверхность, он называется открытым уровнем грунтовых вод. Так обстоит дело в заболоченных местах.
Уровень грунтовых вод может быть очень глубоким и удаленным от корневой зоны, например, после продолжительного засушливого периода. Чтобы корневище оставалось влажным, необходимо провести полив.
2.5.2 Верхний слой подземных вод
Слой грунтовых вод можно найти поверх водонепроницаемого слоя довольно близко к поверхности (от 20 до 100 см).Обычно он охватывает ограниченную территорию. Верхняя часть водного слоя называется возвышающимся уровнем грунтовых вод.
Непроницаемый слой отделяет залегающий слой грунтовых вод от более глубоко расположенного горизонта грунтовых вод (см. Рис. 42).
Рис. 42. Верхний уровень грунтовых вод
Почву с непроницаемым слоем не намного ниже корневой зоны следует орошать с осторожностью, потому что в случае чрезмерного орошения (слишком большого полива) верхний уровень грунтовых вод может быстро поднимаются.
2.5.3 Капиллярный подъем
До сих пор было объяснено, что вода может двигаться вниз, а также горизонтально (или сбоку). Кроме того, вода может двигаться вверх.
Если кусок ткани погрузить в воду (рис. 43), вода будет всасываться тканью вверх.
Рис. 43. Движение воды вверх или капиллярный подъем
Тот же процесс происходит с уровнем грунтовых вод и почвой над ним. Подземные воды могут всасываться почвой вверх через очень маленькие поры, которые называются капиллярами.Этот процесс называется капиллярным подъемом.
В мелкозернистой почве (глине) вода поднимается вверх медленно, но преодолевает большие расстояния. С другой стороны, в крупнозернистой почве (песке) вода поднимается вверх быстро, но охватывает лишь небольшое расстояние.
Текстура почвы | Капиллярный подъем (в см) |
крупный (песок) | от 20 до 50 см |
средний | от 50 до 80 см |
мелкий (глина) | более 80 см до нескольких метров |
2.6.1 Листовая эрозия
2.6.2 Овощная эрозия
Эрозия - это перенос почвы из одного места в другое. Климатические факторы, такие как ветер и дождь, могут вызвать эрозию, но также и при орошении.
За короткий период процесс эрозии практически незаметен. Однако он может быть непрерывным, и весь плодородный верхний слой поля может исчезнуть в течение нескольких лет.
Водная эрозия почвы зависит от:
- склон: крутые, пологие поля более подвержены эрозии;
- структура почвы: легкие почвы более чувствительны к эрозии;
- объем или скорость потока поверхностных стоков: большие или быстрые потоки вызывают большую эрозию.
Эрозия обычно наиболее сильна в начале полива, особенно при поливе на склонах. Сухая поверхностная почва, иногда разрыхленная при культивации, легко удаляется проточной водой. После первого полива почва становится влажной и оседает, поэтому эрозия уменьшается. Недавно орошаемые участки более чувствительны к эрозии, особенно на ранних стадиях.
Существует два основных типа эрозии, вызываемой водой: пластовая эрозия и овражная эрозия. Их часто комбинируют.
2.6.1 Листовая эрозия
Листовая эрозия - это равномерное удаление очень тонкого слоя или «листа» верхнего слоя почвы с наклонной земли. Это происходит на больших площадях земли и вызывает большую часть потерь почвы (см. Рис. 44).
Рис. 44. Листовая эрозия
Признаками листовой эрозии являются:
- только тонкий слой верхнего слоя почвы; или недра частично обнажены; иногда обнажается даже материнская порода;- достаточно большое количество крупного песка, гравия и гальки в пахотном слое, более мелкий материал удален;
- обнажение корней;
- отложение эродированного материала у подножия склона.
2.6.2 Эрозия оврагов
Эрозия оврагов определяется как удаление почвы концентрированным потоком воды, достаточно большим, чтобы образовать каналы или овраги.
Эти овраги несут воду во время сильного дождя или полива и постепенно становятся шире и глубже (см. Рис. 45).
Рис. 45. Эрозия оврага
Признаками овражной эрозии на орошаемом поле являются:
- неравномерное изменение формы и длины борозд;
- скопление эродированного материала на дне борозд;
- обнажение корней растений.
.Индекс сжатия
| Характеристики анализа расчетов | GEO5
Индекс сжатия
class = "h2">Он описывает изменение коэффициента пустотности e как функцию изменения эффективного напряжения σ ef в логарифмической шкале:
Коэффициент пустотности e в зависимости от эффективного напряжения σ ef
Таким образом, он представляет собой деформационную характеристику переуплотненного грунта:
где: | Δe | - | изменение коэффициента пустотности
|
Δlogσ ef | - | изменение эффективного напряжения |
Диапазон индекса сжатия C c (Инженерное командование морских объектов Механика грунтов РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ 7.01)
Типичный диапазон индекса сжатия составляет от 0,1 до 10. Приблизительные значения для однородного песка для диапазона нагрузок от 95 кПа до 3926 кПа достигают значений от 0,05 до 0,06 для рыхлого состояния и от 0,02 до 0,03 для плотного состояния. . Для илов это значение составляет 0,20.
Для слегка переуплотненных глин и илов, испытанных в США, Луизиана Кауфманн и Шерманн (1964) представили следующие значения :
Грунт |
05 Эффективное напряжение консолидации σ 9 cef [кПа] | Конечное эффективное напряжение в грунте σ ef [кПа] | Индекс сжатия C c [-] |
CL мягкая глина | 160 | 200 | 0.34 |
Кл твердая глина | 170 | 250 | 0,44 |
МЛ ил низкой пластичности | 230 | 84 900 0,16 | |
CH глина высокой пластичности | 280 | 350 | 0,84 |
CH мягкая глина с иловыми слоями |